skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat
Essential to spatial orientation in the natural environment is a dynamic representation of direction and distance to objects. Despite the importance of 3D spatial localization to parse objects in the environment and to guide movement, most neurophysiological investigations of sensory mapping have been limited to studies of restrained subjects, tested with 2D, artificial stimuli. Here, we show for the first time that sensory neurons in the midbrain superior colliculus (SC) of the free-flying echolocating bat encode 3D egocentric space, and that the bat’s inspection of objects in the physical environment sharpens tuning of single neurons, and shifts peak responses to represent closer distances. These findings emerged from wireless neural recordings in free-flying bats, in combination with an echo model that computes the animal’s instantaneous stimulus space. Our research reveals dynamic 3D space coding in a freely moving mammal engaged in a real-world navigation task.  more » « less
Award ID(s):
1734744
PAR ID:
10104465
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
eLife
Volume:
7
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an expansion to the Abstract Meaning Representation (AMR) annotation schema that captures fine-grained semantically and pragmatically derived spatial information in grounded corpora. We describe a new lexical category conceptualization and set of spatial annotation tools built in the context of a multimodal corpus consisting of 185 3D structure-building dialogues between a human architect and human builder in Minecraft. Minecraft provides a particularly beneficial spatial relation-elicitation environment because it automatically tracks locations and orientations of objects and avatars in the space according to an absolute Cartesian coordinate system. Through a two-step process of sentence-level and document-level annotation designed to capture implicit information, we leverage these coordinates and bearings in the AMRs in combination with spatial framework annotation to ground the spatial language in the dialogues to absolute space. 
    more » « less
  2. This paper presents an attention-based, deep learning framework that converts robot camera frames with dynamic content into static frames to more easily apply simultaneous localization and mapping (SLAM) algorithms. The vast majority of SLAM methods have difficulty in the presence of dynamic objects appearing in the environment and occluding the area being captured by the camera. Despite past attempts to deal with dynamic objects, challenges remain to reconstruct large, occluded areas with complex backgrounds. Our proposed Dynamic-GAN framework employs a generative adversarial network to remove dynamic objects from a scene and inpaint a static image free of dynamic objects. The Dynamic-GAN framework utilizes spatial-temporal transformers, and a novel spatial-temporal loss function. The evaluation of Dynamic-GAN was comprehensively conducted both quantitatively and qualitatively by testing it on benchmark datasets, and on a mobile robot in indoor navigation environments. As people appeared dynamically in close proximity to the robot, results showed that large, feature-rich occluded areas can be accurately reconstructed with our attention-based deep learning framework for dynamic object removal. Through experiments we demonstrate that our proposed algorithm has up to 25% better performance on average as compared to the standard benchmark algorithms. 
    more » « less
  3. Abstract Natural behaviors occur in closed action-perception loops and are supported by dynamic and flexible beliefs abstracted away from our immediate sensory milieu. How this real-world flexibility is instantiated in neural circuits remains unknown. Here, we have male macaques navigate in a virtual environment by primarily leveraging sensory (optic flow) signals, or by more heavily relying on acquired internal models. We record single-unit spiking activity simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and the dorso-lateral prefrontal cortex (dlPFC). Results show that while animals were able to maintain adaptive task-relevant beliefs regardless of sensory context, the fine-grain statistical dependencies between neurons, particularly in 7a and dlPFC, dynamically remapped with the changing computational demands. In dlPFC, but not 7a, destroying these statistical dependencies abolished the area’s ability for cross-context decoding. Lastly, correlational analyses suggested that the more unit-to-unit couplings remapped in dlPFC, and the less they did so in MSTd, the less were population codes and behavior impacted by the loss of sensory evidence. We conclude that dynamic functional connectivity between neurons in prefrontal cortex maintain a stable population code and context-invariant beliefs during naturalistic behavior. 
    more » « less
  4. Background: Intracortical microstimulation (ICMS) is an emerging approach to restore sensation to people with neurological injury or disease. Biomimetic microstimulation, or stimulus trains that mimic neural activity in the brain through encoding of onset and offset transients, could improve the utility of ICMS for brain-computer interface (BCI) applications, but how biomimetic microstimulation affects neural activation is not understood. Current “biomimetic” ICMS trains aim to reproduce the strong onset and offset transients evoked in the brain by sensory input through dynamic modulation of stimulus parameters. Stimulus induced depression of neural activity (decreases in evoked intensity over time) is also a potential barrier to clinical implementation of sensory feedback, and dynamic microstimulation may reduce this effect. Objective: We evaluated how bio-inspired ICMS trains with dynamic modulation of amplitude and/or frequency change the calcium response, spatial distribution, and depression of neurons in the somatosensory and visual cortices. Methods: Calcium responses of neurons were measured in Layer 2/3 of visual and somatosensory cortices of anesthetized GCaMP6s mice in response to ICMS trains with fixed amplitude and frequency (Fixed) and three dynamic ICMS trains that increased the stimulation intensity during the onset and offset of stimulation by modulating the amplitude (DynAmp), frequency (DynFreq), or amplitude and frequency (DynBoth). ICMS was provided for either 1-s with 4-s breaks (Short) or for 30-s with 15-s breaks (Long). Results: DynAmp and DynBoth trains evoked distinct onset and offset transients in recruited neural populations, while DynFreq trains evoked population activity similar to Fixed trains. Individual neurons had heterogeneous responses primarily based on how quickly they depressed to ICMS, where neurons farther from the electrode depressed faster and a small subpopulation (1–5%) were modulated by DynFreq trains. Neurons that depressed to Short trains were also more likely to depress to Long trains, but Long trains induced more depression overall due to the increased stimulation length. Increasing the amplitude during the hold phase resulted in an increase in recruitment and intensity which resulted in more depression and reduced offset responses. Dynamic amplitude modulation reduced stimulation induced depression by 14.6 ± 0.3% for Short and 36.1 ± 0.6% for Long trains. Ideal observers were 0.031 ± 0.009 s faster for onset detection and 1.33 ± 0.21 s faster for offset detection with dynamic amplitude encoding. Conclusions: Dynamic amplitude modulation evokes distinct onset and offset transients, reduces depression of neural calcium activity, and decreases total charge injection for sensory feedback in BCIs by lowering recruitment of neurons during long maintained periods of ICMS. In contrast, dynamic frequency modulation evokes distinct onset and offset transients in a small subpopulation of neurons but also reduces depression in recruited neurons by reducing the rate of activation. 
    more » « less
  5. Steinernema hermaphroditum entomopathogenic nematodes (EPN) and their Xenorhabdus griffiniae symbiotic bacteria have recently been shown to be a genetically tractable system for the study of both parasitic and mutualistic symbiosis. In their infective juvenile (IJ) stage, EPNs search for insect hosts to invade and quickly kill them with the help of the symbiotic bacteria they contain. The mechanisms behind these behaviors have not been well characterized, including how the nematodes sense their insect hosts. In the well-studied free‑living soil nematode Caenorhabditis elegans, ciliated amphid neurons enable the worms to sense their environment, including chemosensation. Some of these neurons have also been shown to control the decision to develop as a stress-resistant dauer larva, analogous to the infective juveniles of EPNs, or to exit from dauer and resume larval development. In C. elegans and other nematodes, dye-filling with DiI is an easy and efficient method to label these neurons. We developed a protocol for DiI staining of S. hermaphroditum sensory neurons. Using this method, we could identify neurons positionally analogous to the C. elegans amphid neurons ASI, ADL, ASK, ASJ, as well as inner labial neurons IL1 and IL2. Similar to findings in other EPNs, we also found that the IJs of S. hermaphroditum are dye-filling resistant. 
    more » « less