skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors
Award ID(s):
1728370 1637892
PAR ID:
10104500
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
11
Issue:
19
ISSN:
1944-8244
Page Range / eLocation ID:
17836 to 17842
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. It is well established that temperature variability affects a range of outcomes relevant to human welfare, including health, emotion and mood, and productivity across a number of economic sectors. However, a critical and still unresolved empirical question is whether temperature variation has a long-lasting effect on economic productivity and, therefore, whether damages compound over time in response to long-lived changes in temperature expected with climate change. Several studies have identified a relationship between temperature and gross domestic product (GDP), but empirical evidence as to the persistence of these effects is still weak. This paper presents a novel approach to isolate the persistent component of temperature effects on output using lower frequency temperature variation. The effects are heterogeneous across countries but collectively, using three different GDP datasets, we find evidence of persistent effects, implying temperature affects the determinants of economic growth, not just economic productivity. This, in turn, means that the aggregate effects of climate change on GDP may be far larger and far more uncertain than currently represented in integrated assessment models used to calculate the social cost of carbon. 
    more » « less
  3. Monitoring health status is a critical aspect of primate conservation, yet can be difficult to noninvasively investigate in the wild. Internal body temperature, a marker of health in endotherms, has been tested in humans and chimpanzees using two different fecal temperature methods: using the peak internal temperature (PIT) or applying a sigmoid curve (SC). We tested both methods on wild and rehabilitant Bornean orangutans to determine if either is a feasible methodology for arboreal mammals. The SC method involves a series of temperatures for each sample that we fitted to a sigmoid curve, whereas the PIT method involved a single peak temperature recording. Estimates from the two methods were not significantly different in either our wild (T(88)= -2.0781, P=0.0406) or rehabilitant (T(29)= -2.8404, P=0.0082) samples. Adult rehabilitant body temperatures (N=9; 34.62 ± 1.32°C) were estimated to be hotter than those in the wild (N=107; 33.59 ± 1.66°C), although not significantly different (T(115)=1.9859; P=0.0493). In our model, testing a number of factors, we found height of fecal drop (P=0.0071), fecal weight (P=0.0198), and time of day (P=0.0029) to significantly affect body temperature estimates. Our field sample (N=107) indicates that wild orangutans have an internal fecal temperature, ranging between 29.5 and 37.3°C, lower than mean temperatures for chimpanzees or humans. This supports the finding that orangutans have lower metabolic rates than do most other eutherian mammals. Lower body temperature may serve as a metabolic adaptation of orangutans to survive extended periods of low food availability when energy needs to be conserved. 
    more » « less