skip to main content

Title: A Variable Stiffness Robotic Arm Using Linearly Actuated Compliant Parallel Guided Mechanism
This paper details the mechanical design and control of a human safety robotic arm with variable stiffness, starting from conceptual design to prototype. The mechanism designed is based on parallel guided beam with a roller slider actuated by a power screw and a DC motor with an encoder for position feedback. Unlike conventional robotic systems that control the stiffness in joints, this design introduces compliance to the robotic arm link itself. By controlling the slider position, the effective length of the link can be adjusted to provide the necessary stiffness change. A PID position controller is employed and the position accuracy is experimentally evaluated. The stiffness variation of the prototype is validated by experiments and FEA simulation. The overall stiffness change achieved is 20-fold.
Authors:
; ;
Award ID(s):
1637656
Publication Date:
NSF-PAR ID:
10104539
Journal Name:
IFToMM Symposium on Mechanism Design for Robotics
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To reduce injury in physical human–robot interactions (pHRIs), a common practice is to introduce compliance to joints or arm of a robotic manipulator. In this paper, we present a robotic arm made of parallel guided beams whose stiffness can be continuously tuned by morphing the shape of the cross section through two four-bar linkages actuated by servo motors. An analytical lateral stiffness model is derived based on the pseudo-rigid-body model and validated by experiments. A physical prototype of a three-armed manipulator is built. Extensive stiffness and impact tests are conducted, and the results show that the stiffness of the robotic arm can be changed up to 3.6 times at a morphing angle of 37 deg. At an impact velocity of 2.2 m/s, the peak acceleration has a decrease of 19.4% and a 28.57% reduction of head injury criteria (HIC) when the arm is tuned from the high stiffness mode to the low stiffness mode. These preliminary results demonstrate the feasibility to reduce impact injury by introducing compliance into the robotic link and that the compliant link solution could be an alternative approach for addressing safety concerns of physical human–robot interactions.
  2. Abstract In this paper, we study the effects of mechanical compliance on safety in physical human–robot interaction (pHRI). More specifically, we compare the effect of joint compliance and link compliance on the impact force assuming a contact occurred between a robot and a human head. We first establish pHRI system models that are composed of robot dynamics, an impact contact model, and head dynamics. These models are validated by Simscape simulation. By comparing impact results with a robotic arm made of a compliant link (CL) and compliant joint (CJ), we conclude that the CL design produces a smaller maximum impact force given the same lateral stiffness as well as other physical and geometric parameters. Furthermore, we compare the variable stiffness joint (VSJ) with the variable stiffness link (VSL) for various actuation parameters and design parameters. While decreasing stiffness of CJs cannot effectively reduce the maximum impact force, CL design is more effective in reducing impact force by varying the link stiffness. We conclude that the CL design potentially outperforms the CJ design in addressing safety in pHRI and can be used as a promising alternative solution to address the safety constraints in pHRI.
  3. This paper presents the design of a wearable robotic forearm for close-range human-robot collaboration. The robot's function is to serve as a lightweight supernumerary third arm for shared workspace activities. We present a functional prototype resulting from an iterative design process including several user studies. An analysis of the robot's kinematics shows an increase in reachable workspace by 246 % compared to the natural human reach. The robot's degrees of freedom and range of motion support a variety of usage scenarios with the robot as a collaborative tool, including self-handovers, fetching objects while the human's hands are occupied, assisting human-human collaboration, and stabilizing an object. We analyze the bio-mechanical loads for these scenarios and find that the design is able to operate within human ergonomic wear limits. We then report on a pilot human-robot interaction study that indicates robot autonomy is more task-time efficient and preferred by users when compared to direct voice-control. These results suggest that the design presented here is a promising configuration for a lightweight wearable robotic augmentation device, and can serve as a basis for further research into human-wearable collaboration.
  4. Recent studies on dynamic legged locomotion have focused on incorporating passive compliant elements into robot legs which can help with energy efficiency and stability, enabling them to work in wide range of environments. In this work, we present the design and testing of a soft robotic foot capable of active stiffness control using granular jamming. This foot is designed and tested to be used on soft, flowable ground such as sand. Granular jamming feet enable passive foot shape change when in contact with the ground for adaptability to uneven surfaces, and can also actively change stiffness for the ability to apply sufficient propulsion forces. We seek to study the role of shape change and stiffness change in foot-ground interactions during foot-fall impact and shear. We have measured the acceleration during impact, surface traction force, and the force to pull the foot out of the medium for different states of the foot. We have demonstrated that the control of foot stiffness and shape using the proposed foot design leads to improved locomotion, specifically an approximately 52% reduced foot deceleration at the joints after impact, an approximately 63% reduced depth of penetration in the sand on impact, higher shear force capabilities formore »a constant depth above the ground, and an approximately 98% reduced pullout force compared to a rigid foot.« less
  5. In an effort to combine two rehabilitation strategies, Functional Electrical Stimulation (FES) and robotic therapy, a rehabilitation robot was developed to challenge an arm during bicep curls elicited by closed-loop control of FES. The robot is designed to act as an admittance and its robust, sliding mode controller is proven to be passive with respect to the human. The FES controller utilizes a robust, sliding mode control design to then dominate the robot effects and obtain global exponential stability as demonstrated by a Lyapunov-based stability analysis. The two interacting controllers yield arm position and velocity regulation, where the robot challenges this movement with a desired admittance.