skip to main content


Title: Three to tango requires a site-specific substitution: hetero tri metallic molecular precursors for high-voltage rechargeable batteries
Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of hetero tri metallic species LiMnCo(thd) 5 rather than a statistical mixture of two hetero bi metallic LiMn 2 (thd) 5 and LiCo 2 (thd) 5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO 4 and LiMn 1.5 Co 0.5 O 4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5 V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors.  more » « less
Award ID(s):
9531011 1726724
NSF-PAR ID:
10104565
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
2
ISSN:
2041-6520
Page Range / eLocation ID:
524 to 534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The paper describes a heterobimetallic mixed-ligand hexanuclear precursor [NaMn2(thd)4(OAc)]2 (1) (thd = 2,2,6,6-tetramethyl-3,5-heptadionate; OAc = acetate) that was designed based on its lithium homoleptic analogue, [LiMn2(thd)5], by replacing one of the thd ligands with an acetate group in order to accommodate 5-coordinated sodium instead of tetrahedral lithium ion. The complex, which is highly volatile and soluble in a variety of common solvents, has been synthesized by both the solid-state and solution methods. The unique “dimer-of-trimers” heterometallic structure consists of two trinuclear [NaMnII2(thd)4]+ units firmly bridged by two acetate ligands. X-ray diffraction techniques, DART mass spectrometry, ICP-OES analysis, and IR spectroscopy have been employed to confirm the structure and composition of the hexanuclear complex. Similar to the Li counterpart forming LiMn2O4 spinel material upon thermal decomposition, the title Na:Mn = 1:2 compound was utilized as the first single-source precursor for the low-temperature preparation of Na4Mn9O18 tunnel oxide. Importantly, four Mn sites in the hexanuclear molecule can be potentially partially substituted by other transition metals, leading to heterotri- and tetrametallic precursors for the advanced quaternary and quinary Na-ion oxide cathode materials.

     
    more » « less
  2. This work raises a fundamental question about the “real” structure of molecular compounds containing three different metals: whether they consist of genuine hetero tri metallic species or of a mixture of parent hetero bi metallic species. Heterotrimetallic complex Li 2 CoNi(tbaoac) 6 ( 1 , tbaoac = tert -butyl acetoacetate) has been designed based on the model tetranuclear structure featuring two transition metal sites in order to be utilized as a molecular precursor for the low-temperature preparation of the LiCo 0.5 Ni 0.5 O 2 battery cathode material. An investigation of the structure of 1 appeared to be very challenging, since the Co and Ni atoms have very similar atomic numbers, monoisotopic masses, and radii as well as the same oxidation state and coordination number/environment. Using a statistical analysis of heavily overlaid isotope distribution patterns of the [Li 2 MM′L 5 ] + (M/M′ = Co 2 , Ni 2 , and CoNi) ions in DART mass spectra, it was concluded that the reaction product 1 contains both heterotrimetallic and bimetallic species. A structural analogue approach has been applied to obtain Li 2 MMg(tbaoac) 6 (M = Co ( 2 ) and Ni ( 3 )) complexes that contain lighter, diamagnetic magnesium in the place of one of the 3d transition metals. X-ray crystallography, mass spectrometry, and NMR spectroscopy unambiguously confirmed the presence of three types of molecules in the reaction mixture that reaches an equilibrium, Li 2 M 2 L 6 + Li 2 Mg 2 L 6 ↔ 2Li 2 MMgL 6 , upon prolonged reflux in solution. The equilibrium mixture was shown to have a nearly statistical distribution of the three molecules, and this is fully supported by the results of theoretical calculations revealing that the stabilization energies of hetero tri metallic assemblies fall exactly in between those for the parent hetero bi metallic species. The LiCo 0.5 Ni 0.5 O 2 quaternary oxide has been obtained in its phase-pure form by thermal decomposition of heterometallic precursor 1 at temperatures as low as 450 °C. Its chemical composition, structure, morphology, and transition metal distribution have been studied by X-ray and electron diffraction techniques and compositional energy-dispersive X-ray mapping with nanometer resolution. The work clearly illustrates the advantages of heterometallic single-source precursors over the corresponding multi-source precursors. 
    more » « less
  3. Multicomponent transition metal oxides are among the most successful lithium-ion battery cathode materials, and many previous reports have described the sensitivity of final electrochemical performance of the active materials to the detailed composition and processing. Coprecipitation of a precursor template is a popular, scalable route to synthesize these transition metal oxide cathode materials because of the homogeneous mixing of the transition metals within the particles, and the morphology control provided by the precursors. However, the deviation of the precursor composition from feed conditions is a challenge that has generally not been reported in previous studies. Using a target final material of the high voltage spinel LiMn 1.5 Ni 0.5 O 4 as an example, we show in this study that the compositional deviation caused by coprecipitation can be significant under certain conditions, impacting the calcined final material structure and electrochemical properties. The study herein provides insights into the role of solution equilibrium and rate of precipitation of the transition metals during precipitate formation on precursor, and thus final active material, composition. Such knowledge is necessary to rationally predict and tune multicomponent battery precursor compositions synthesized via coprecipitation with high levels of accuracy. 
    more » « less
  4. Abstract

    The deposition of protective coatings on the spinel LiMn2O4(LMO) lithium‐ion battery cathode is effective in reducing Mn dissolution from the electrode surface. Although protective coatings positively affect LMO cycle life, much remains to be understood regarding the interface formed between these coatings and LMO. Using operando powder X‐ray diffraction with Rietveld refinement, it is shown that, in comparison to bare LMO, the lattice parameter of a model Au‐coated LMO cathode is significantly reduced upon relithiation. Less charge passes through Au‐coated LMO in comparison to bare LMO, suggesting that the reduced lattice parameter is associated with decreased Li+solubility in the Au‐coated LMO. Density functional theory calculations show that a more Li+‐deficient near‐surface is thermodynamically favorable in the presence of the Au coating, which may further stabilize these cathodes through suppressing formation of the Jahn–Teller distorted Li2Mn2O4phase at the surface. Electronic structure and chemical bonding analyses show enhanced hybridization between Au and LMO for delithiated surfaces leading to partial oxidation of Au upon delithiation. This study suggests that, in addition to transition metal dissolution from electrode surfaces, protective coating design must also balance potential energy effects induced by charge transfer at the electrode‐coating interface.

     
    more » « less
  5. Abstract

    A known trinuclear structure was used to design the heterobimetallic mixed‐valent, mixed‐ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] (1). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] (2) and [NiII(hfac)3−Na−CoIII(acac)3] (3) via isovalent site‐specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple‐wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of2and3are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform1exhibits flexibility in accommodating a variety of di‐ and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4functional oxide materials.

     
    more » « less