skip to main content


Title: Tools for Assessing the Creative Person, Process, and Product in Engineering Education
WIP: Assessing the Creative Person, Process and Product in Engineering Education This evidence-based practice paper provides guidance in assessing creativity in engineering education. In the last decade, a number of vision statements on the future of engineering education (e.g. Educating the Engineer of 2020, the ASCE Body of Knowledge) point to the fact that creativity is essential to engineering innovation; it is regarded as an important attribute in the education of engineers in order to meet the most urgent national challenges and to drive economic growth in the new millennium. Yet studies suggest that engineering students’ creative skills are being left underdeveloped or diminish over the course of their studies, or worse, that students who consider themselves to be creative are being driven away from engineering as a chosen field. On the surface, creativity skills are perceived as difficult to utilize in the engineering classroom, primarily due to the didactic nature of science and engineering instruction. Assessing the product of open ended or ill-structured assignments remains a difficult task as well. This study examines available assessments for creativity that are founded in three of the Four Ps of creativity: person, process, product (the fourth P, press, is not considered in this work.) The intent is to identify verified metrics that can be used to quantify creativity with a particular look to whether the metrics are appropriate for creativity, particularly as they pertain to the science and engineering domains. These metrics are examined for applicability to science and engineering, ease of administration and completion, expertise required to score, cost to administer, and time required to administer. Rather than determining the “best” metrics, this examination will provide guidelines for engineering educators and researchers interested in creativity for selecting appropriate metrics to be used in classrooms and research studies based on metric attributes.  more » « less
Award ID(s):
1712195
NSF-PAR ID:
10104575
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Investigations of creativity have been an intriguing topic for a long time, but assessing creativity is extremely complex. Creativity is a cornerstone of engineering disciplines, so understanding creativity and how to enhance creative abilities through engineering education has received substantial attention. Fields outside of engineering are no stranger to neuro-investigations of creativity and although some neuro-response studies have been conducted to understand creativity in engineering, these studies need to map the engineering design and concept generation processes better. Using neuroimaging techniques alongside engineering design and concept generation processes is necessary for understanding how to improve creative idea generation and creativity studies in engineering. In this paper, a survey is provided of the literature for the different neurological approaches that have been used to study the engineering design process and creative processes. Also presented are proposed strategies to apply these neurological approaches to engineering design to understand the creative process in greater detail. Furthermore, results from a pilot study investigating neuro-responses of engineers are presented. 
    more » « less
  2. null (Ed.)
    Assessing creativity is not an easy task, but that has not stopped researchers from exploring it. Because creativity is essential to engineering disciplines, knowing how to enhance creative abilities through engineering education has been a topic of interest. In this paper, the event related potential (ERP) technique is used to study the neural responses of engineers via a modified alternative uses task (AUT). Though only a pilot study testing two participants, the preliminary results of this study indicate general neuro-responsiveness to novel or unusual stimuli. These findings also suggest that a scaled-up study along these lines would enable better understanding and modeling of neuroresponses of engineers and creative thinking, as well as contribute to the growing field of ERP research in the field of engineering. 
    more » « less
  3. Creative self-efficacy (CSE) was studied in connection to beliefs about creativity. CSE is one’s belief in their own creative potential. The belief that creativity can improve was discussed as a “Growth Creativity Mindset” (GCM), and the belief that creativity cannot improve was discussed as a “Fixed Creativity Mindset” (FCM). Creativity within engineering has been described as crucial to the field, and as an aspect that is appealing to women engineers. Undergraduate women engineering students local to the Philadelphia area volunteered to take a survey of CSE and beliefs about creativity. Quantitative data analysis showed that an increase in GCM likely results in an increase in CSE for students with higher than average GPA. A change in CSE had no effect on FCM. Interviews were conducted with 15 survey respondents with different levels of CSE who met criteria for success in the engineering major (2.5 GPA or above and successful completion of calculus II). Synthesis of the quantitative and qualitative data revealed that interview participants had similar lived experiences that lead them to a level of success in the engineering major, but different lived experiences that distinguished them with respect to CSE level. All participants were exposed to project based learning (PBL), had strong personal influences, exhibited perseverance in overcoming struggles, and described their negative perceptions of engineering before entering the major. Participants with all levels of CSE highlighted their own creativity with respect to the performing and visual arts, before reflecting on innovation as creative. Most participants with low CSE described their lack of creativity in the arts. They also discussed being “intimidated” by negative classroom experiences more than their peers with higher levels of CSE. Those with low CSE were also exposed to more engineering centered experiences in high school, and most had a parent who worked in the profession. It is expected that this research will provide a more comprehensive understanding of CSE, perceptions of engineering as a creative field, and the educational reform needed that connects creativity to engineering in an atmosphere that welcomes diversity. 
    more » « less
  4. This study aims to investigate the development of creativity in engineering education and how spatial skills relate to creativity of design solutions. Undergraduate students in the first (n=86) and fourth/fifth year (n=48) of their engineering programme were invited to participate. Students completed four spatial tests to precisely measure visualisation skills. In a separate session, students were invited back to solve two engineering design tasks: a ping pong problem where they designed a ping pong ball launcher game to meet specified criteria and a rain catcher problem where they were tasked with developing as many ideas for capturing rainwater as a water source for a remote location as they could. Students were asked not to consider feasibility, cost, etc. and to come up multiple radical solutions to the rainwater capture problem. The creativity of design solutions was assessed using Adaptive Comparative Judgement. Statistical analysis indicated significant relationships between spatial skills, students’ year of study and gender. A statistically significant relationship was also found between students’ creativity scores on both design challenges. No statistical differences were determined in the creativity of first and fourth/fifth year students’ solutions. These findings will be discussed relative to existing research, future work, and potential implications for education practice. 
    more » « less
  5. The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of real-world technical problems. The STEAM paradigm changes the dominant “chalk and talk” lecture and “closed-ended” problem-solving orientation of traditional engineering pedagogy to a hands-on, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations. 
    more » « less