skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The VLA Nascent Disk and Multiplicity Survey of Perseus Protostars (VANDAM). IV. Free–Free Emission from Protostars: Links to Infrared Properties, Outflow Tracers, and Protostellar Disk Masses
Award ID(s):
1716259
PAR ID:
10104636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
238
Issue:
2
ISSN:
1538-4365
Page Range / eLocation ID:
19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Star formation is ubiquitously associated with the ejection of accretion-powered outflows that carve bipolar cavities through the infalling envelope. This feedback is expected to be important for regulating the efficiency of star formation from a natal prestellar core. These low-extinction outflow cavities greatly affect the appearance of a protostar by allowing the escape of shorter-wavelength photons. Doppler-shifted CO line emission from outflows is also often the most prominent manifestation of deeply embedded early-stage star formation. Here, we present 3D magnetohydrodynamic simulations of a disk wind outflow from a protostar forming from an initially 60Mcore embedded in a high-pressure environment typical of massive star-forming regions. We simulate the growth of the protostar fromm*= 1Mto 26Mover a period of ∼100,000 yr. The outflow quickly excavates a cavity with a half opening angle of ∼10° through the core. This angle remains relatively constant until the star reaches 4M. It then grows steadily in time, reaching a value of ∼50° by the end of the simulation. We estimate a lower limit to the star formation efficiency (SFE) of 0.43. However, accounting for continued accretion from a massive disk and residual infall envelope, we estimate that the final SFE may be as high as ∼0.7. We examine observable properties of the outflow, especially the evolution of the cavity's opening angle, total mass, and momentum flux, and the velocity distributions of the outflowing gas, and compare with the massive protostars G35.20-0.74N and G339.88-1.26 observed by the Atacama Large Millimeter/submillimeter Array (ALMA), yielding constraints on their intrinsic properties. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract We present Markov Chain Monte Carlo radiative transfer modeling of a joint ALMA 345 GHz and spectral energy distribution data set for a sample of 97 protostellar disks from the VLA and ALMA Nascent Disk and Multiplicity Survey of Orion Protostars. From this modeling, we derive disk and envelope properties for each protostar, allowing us to examine the bulk properties of a population of young protostars. We find that disks are small, with a median dust radius of 29.4 − 2.7 + 4.1 au and a median dust mass of 5.8 − 2.7 + 4.6 M ⊕ . We find no statistically significant difference between most properties of Class 0, Class I, and flat-spectrum sources with the exception of envelope dust mass and inclination. The distinction between inclination is an indication that the Class 0/I/flat-spectrum system may be difficult to tie uniquely to the evolutionary state of protostars. When comparing with Class II disk dust masses in Taurus from similar radiative transfer modeling, we further find that the trend of disk dust mass decreasing from Class 0 to Class II disks is no longer present, though it remains unclear whether such a comparison is fair owing to differences in star-forming region and modeling techniques. Moreover, the disks we model are broadly gravitationally stable. Finally, we compare disk masses and radii with simulations of disk formation and find that magnetohydrodynamical effects may be important for reproducing the observed properties of disks. 
    more » « less