skip to main content


Title: Calcineurin B-Like Proteins CBL4 and CBL10 Mediate Two Independent Salt Tolerance Pathways in Arabidopsis
In Arabidopsis, the salt overly sensitive (SOS) pathway, consisting of calcineurin B-like protein 4 (CBL4/SOS3), CBL-interacting protein kinase 24 (CIPK24/SOS2) and SOS1, has been well defined as a crucial mechanism to control cellular ion homoeostasis by extruding Na+ to the extracellular space, thus conferring salt tolerance in plants. CBL10 also plays a critical role in salt tolerance possibly by the activation of Na+ compartmentation into the vacuole. However, the functional relationship of the SOS and CBL10-regulated processes remains unclear. Here, we analyzed the genetic interaction between CBL4 and CBL10 and found that the cbl4 cbl10 double mutant was dramatically more sensitive to salt as compared to the cbl4 and cbl10 single mutants, suggesting that CBL4 and CBL10 each directs a different salt-tolerance pathway. Furthermore, the cbl4 cbl10 and cipk24 cbl10 double mutants were more sensitive than the cipk24 single mutant, suggesting that CBL10 directs a process involving CIPK24 and other partners different from the SOS pathway. Although the cbl4 cbl10, cipk24 cbl10, and sos1 cbl10 double mutants showed comparable salt-sensitive phenotype to sos1 at the whole plant level, they all accumulated much lower Na+ as compared to sos1 under high salt conditions, suggesting that CBL10 regulates additional unknown transport processes that play distinct roles from the SOS1 in Na+ homeostasis.  more » « less
Award ID(s):
1714795
NSF-PAR ID:
10104891
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
20
Issue:
10
ISSN:
1422-0067
Page Range / eLocation ID:
2421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.

     
    more » « less
  2. Stomatal pores close rapidly in response to low-air-humidity-induced leaf-to-air vapor pressure difference (VPD) increases, thereby reducing excessive water loss. The hydroactive signal-transduction mechanisms mediating high VPD–induced stomatal closure remain largely unknown. The kinetics of stomatal high-VPD responses were investigated by using time-resolved gas-exchange analyses of higher-order mutants in guard-cell signal-transduction branches. We show that the slow-type anion channel SLAC1 plays a relatively more substantial role than the rapid-type anion channel ALMT12/QUAC1 in stomatal VPD signaling. VPD-induced stomatal closure is not affected in mpk12 / mpk4GC double mutants that completely disrupt stomatal CO 2 signaling, indicating that VPD signaling is independent of the early CO 2 signal-transduction pathway. Calcium imaging shows that osmotic stress causes cytoplasmic Ca 2+ transients in guard cells. Nevertheless, osca1-2 / 1.3 / 2.2 / 2.3 / 3.1 Ca 2+ -permeable channel quintuple, osca1.3 / 1.7 -channel double, cngc5 / 6 -channel double, cngc20 -channel single, cngc19 / 20crispr -channel double, glr3.2 / 3.3 -channel double, cpk- kinase quintuple, cbl1 / 4 / 5 / 8 / 9 quintuple, and cbl2 / 3rf double mutants showed wild-type-like stomatal VPD responses. A B3-family Raf-like mitogen-activated protein (MAP)-kinase kinase kinase, M3Kδ5/RAF6, activates the OST1/SnRK2.6 kinase in plant cells. Interestingly, B3 Raf-kinase m3kδ5 and m3kδ1 / δ5 / δ6 / δ7 ( raf3 / 6 / 5 / 4 ) quadruple mutants, but not a 14-gene raf-kinase mutant including osmotic stress-linked B4-family Raf-kinases, exhibited slowed high-VPD responses, suggesting that B3-family Raf-kinases play an important role in stomatal VPD signaling. Moreover, high VPD–induced stomatal closure was impaired in receptor-like pseudokinase GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1) mutant alleles. Notably, the classical transient “wrong-way” VPD response was absent in ghr1 mutant alleles. These findings reveal genes and signaling mechanisms in the elusive high VPD–induced stomatal closing response pathway. 
    more » « less
  3. Bone morphogenetic protein (BMP) signaling regulates many different developmental and homeostatic processes in metazoans. The BMP pathway is conserved in Caenorhabditis elegans, and is known to regulate body size and mesoderm development. We have identified the C. elegans smoc-1 (Secreted MOdular Calcium-binding protein-1) gene as a new player in the BMP pathway. smoc-1(0) mutants have a small body size, while overexpression of smoc-1 leads to a long body size and increased expression of the RAD-SMAD (reporter acting downstream of SMAD) BMP reporter, suggesting that SMOC-1 acts as a positive modulator of BMP signaling. Using double-mutant analysis, we showed that SMOC-1 antagonizes the function of the glypican LON-2 and acts through the BMP ligand DBL-1 to regulate BMP signaling. Moreover, SMOC-1 appears to specifically regulate BMP signaling without significant involvement in a TGFβ-like pathway that regulates dauer development. We found that smoc-1 is expressed in multiple tissues, including cells of the pharynx, intestine, and posterior hypodermis, and that the expression of smoc-1 in the intestine is positively regulated by BMP signaling. We further established that SMOC-1 functions cell nonautonomously to regulate body size. Human SMOC1 and SMOC2 can each partially rescue the smoc-1(0) mutant phenotype, suggesting that SMOC-1's function in modulating BMP signaling is evolutionarily conserved. Together, our findings highlight a conserved role of SMOC proteins in modulating BMP signaling in metazoans. 
    more » « less
  4. Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MAPK3 or MPK3) and MPK6 play important signaling roles in plant immunity and growth/development. MAPK KINASE4 (MKK4) and MKK5 function redundantly upstream of MPK3 and MPK6 in these processes. YDA, also known as MAPKKK4, is upstream of MKK4/MKK5 and forms a complete MAPK cascade (YDA–MKK4/MKK5–MPK3/MPK6) in regulating plant growth and development. In plant immunity, MAPKKK3 and MAPKKK5 function redundantly upstream of the same MKK4/MKK5–MPK3/MPK6 module. However, the residual activation of MPK3/MPK6 in the mapkkk3 mapkkk5 double mutant in response to flg22 PAMP treatment suggests the presence of additional MAPKKK(s) in this MAPK cascade in signaling plant immunity. To investigate whether YDA is also involved in plant immunity, we attempted to generate mapkkk3 mapkkk5 yda triple mutants. However, it was not possible to recover one of the double mutant combinations (mapkkk5 yda) or the triple mutant (mapkkk3 mapkkk5 yda) due to a failure of embryogenesis. Using the CRISPR-Cas9 approach, we generated weak, N-terminal deletion alleles of YDA, yda-del, in a mapkkk3 mapkkk5 background. PAMP-triggered MPK3/MPK6 activation was further reduced in the mapkkk3 mapkkk5 yda-del mutant, and the triple mutant was more susceptible to pathogen infection, suggesting YDA also plays an important role in plant immune signaling. In addition, MAPKKK5 and, to a lesser extent, MAPKKK3 were found to contribute to gamete function and embryogenesis, together with YDA. While the double homozygous mapkkk3 yda mutant showed the same growth and development defects as the yda single mutant, mapkkk5 yda double mutant and mapkkk3 mapkkk5 yda triple mutants were embryo lethal, similar to the mpk3 mpk6 double mutants. These results demonstrate that YDA, MAPKKK3, and MAPKKK5 have overlapping functions upstream of the MKK4/MKK5–MPK3/MPK6 module in both plant immunity and growth/development. 
    more » « less
  5. Abstract

    The developmental genetics of reproductive structure control in maize must consider both the staminate florets of the tassel and the pistillate florets of the ear synflorescences. Pistil abortion takes place in the tassel florets, and stamen arrest is affected in ear florets to give rise to the monoecious nature of maize. Gibberellin (GA) deficiency results in increased tillering, a dwarfed plant syndrome, and the retention of anthers in the ear florets of maize. Thesilkless1mutant results in suppression of silks in the ear. We demonstrate in this study that jasmonic acid (JA) and GA act independently and show additive phenotypes resulting in androeciousdwarf1;silkless1double mutant plants. The persistence of pistils in the tassel can be induced by multiple mechanisms, including JA deficiency, GA excess, genetic control of floral determinacy, and organ identity. Thesilkless1mutant can suppress both silks in the ear and the silks in the tassel of JA‐deficient and AP2 transcription factortasselseedmutants. We previously demonstrated that GA production was required for brassinosteroid (BR) deficiency to affect persistence of pistils in the tassel. We find that BR deficiency affects pistil persistence by an independent mechanism from thesilkless1mutant and JA pathway. Thesilkless1mutant did not prevent the formation of pistils in the tassel bynana plant2in double mutants. In addition, we demonstrate that there is more to thesilkless1mutant than just a suppression of pistil growth. We document novel phenotypes ofsilkless1mutants including weakly penetrant ear fasciation and anther persistence in the ear florets. Thus, the JA/AP2 mechanism of pistil retention in the tassel and silk growth in the ear are similarly sensitive to loss of the SILKLESS1 protein, while the BR/GA mechanism is not.

     
    more » « less