skip to main content

Title: Two transporters mobilize magnesium from vacuolar stores to enable plant acclimation to magnesium deficiency
Abstract

Magnesium (Mg) is an essential metal for chlorophyll biosynthesis and other metabolic processes in plant cells. Mg is largely stored in the vacuole of various cell types and remobilized to meet cytoplasmic demand. However, the transport proteins responsible for mobilizing vacuolar Mg2+ remain unknown. Here, we identified two Arabidopsis (Arabidopsis thaliana) Mg2+ transporters (MAGNESIUM TRANSPORTER 1 and 2; MGT1 and MGT2) that facilitate Mg2+ mobilization from the vacuole, especially when external Mg supply is limited. In addition to a high degree of sequence similarity, MGT1 and MGT2 exhibited overlapping expression patterns in Arabidopsis tissues, implying functional redundancy. Indeed, the mgt1 mgt2 double mutant, but not mgt1 and mgt2 single mutants, showed exaggerated growth defects as compared to the wild type under low-Mg conditions, in accord with higher expression levels of Mg-starvation gene markers in the double mutant. However, overall Mg level was also higher in mgt1 mgt2, suggesting a defect in Mg2+ remobilization in response to Mg deficiency. Consistently, MGT1 and MGT2 localized to the tonoplast and rescued the yeast (Saccharomyces cerevisiae) mnr2Δ (manganese resistance 2) mutant strain lacking the vacuolar Mg2+ efflux transporter. In addition, disruption of MGT1 and MGT2 suppressed high-Mg sensitivity of calcineurin B-like 2 and more » 3 (cbl2 cbl3), a mutant defective in vacuolar Mg2+ sequestration, suggesting that vacuolar Mg2+ influx and efflux processes are antagonistic in a physiological context. We further crossed mgt1 mgt2 with mgt6, which lacks a plasma membrane MGT member involved in Mg2+ uptake, and found that the triple mutant was more sensitive to low-Mg conditions than either mgt1 mgt2 or mgt6. Hence, Mg2+ uptake (via MGT6) and vacuolar remobilization (through MGT1 and MGT2) work synergistically to achieve Mg2+ homeostasis in plants, especially under low-Mg supply in the environment.

« less
Authors:
; ; ; ; ; ; ;
Award ID(s):
2041585
Publication Date:
NSF-PAR ID:
10372635
Journal Name:
Plant Physiology
Volume:
190
Issue:
2
Page Range or eLocation-ID:
p. 1307-1320
ISSN:
0032-0889
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnesium (Mg2+) is an essential nutrient in all organisms. However, high levels of Mg2+ in the environment are toxic to plants. In this study, we identified the vacuolar-type H+-pyrophosphatase, AVP1, as a critical enzyme for optimal plant growth under high-Mg conditions. The Arabidopsis avp1 mutants displayed severe growth retardation, as compared to the wild-type plants upon excessive Mg2+. Unexpectedly, the avp1 mutant plants retained similar Mg content to wild-type plants under either normal or high Mg conditions, suggesting that AVP1 may not directly contribute to Mg2+ homeostasis in plant cells. Further analyses confirmed that the avp1 mutant plants contained a higher pyrophosphate (PPi) content than wild type, coupled with impaired vacuolar H+-pyrophosphatase activity. Interestingly, expression of the Saccharomyces cerevisiae cytosolic inorganic pyrophosphatase1 gene IPP1, which facilitates PPi hydrolysis but not proton translocation into vacuole, rescued the growth defects of avp1 mutants under high-Mg conditions. These results provide evidence that high-Mg sensitivity in avp1 mutants possibly resulted from elevated level of cytosolic PPi. Moreover, genetic analysis indicated that mutation of AVP1 was additive to the defects in mgt6 and cbl2 cbl3 mutants that are previously known to be impaired in Mg2+ homeostasis. Taken together, our results suggest AVP1 is required formore »cellular PPi homeostasis that in turn contributes to high-Mg tolerance in plant cells.« less
  2. In Arabidopsis, the salt overly sensitive (SOS) pathway, consisting of calcineurin B-like protein 4 (CBL4/SOS3), CBL-interacting protein kinase 24 (CIPK24/SOS2) and SOS1, has been well defined as a crucial mechanism to control cellular ion homoeostasis by extruding Na+ to the extracellular space, thus conferring salt tolerance in plants. CBL10 also plays a critical role in salt tolerance possibly by the activation of Na+ compartmentation into the vacuole. However, the functional relationship of the SOS and CBL10-regulated processes remains unclear. Here, we analyzed the genetic interaction between CBL4 and CBL10 and found that the cbl4 cbl10 double mutant was dramatically more sensitive to salt as compared to the cbl4 and cbl10 single mutants, suggesting that CBL4 and CBL10 each directs a different salt-tolerance pathway. Furthermore, the cbl4 cbl10 and cipk24 cbl10 double mutants were more sensitive than the cipk24 single mutant, suggesting that CBL10 directs a process involving CIPK24 and other partners different from the SOS pathway. Although the cbl4 cbl10, cipk24 cbl10, and sos1 cbl10 double mutants showed comparable salt-sensitive phenotype to sos1 at the whole plant level, they all accumulated much lower Na+ as compared to sos1 under high salt conditions, suggesting that CBL10 regulates additional unknown transport processesmore »that play distinct roles from the SOS1 in Na+ homeostasis.« less
  3. Abstract

    Autophagy and multivesicular bodies (MVBs) represent 2 closely related lysosomal/vacuolar degradation pathways. In Arabidopsis (Arabidopsis thaliana), autophagy is stress-induced, with deficiency in autophagy causing strong defects in stress responses but limited effects on growth. LYST-INTERACTING PROTEIN 5 (LIP5) is a key regulator of stress-induced MVB biogenesis, and mutation of LIP5 also strongly compromises stress responses with little effect on growth in Arabidopsis. To determine the functional interactions of these 2 pathways in Arabidopsis, we generated mutations in both the LIP5 and AUTOPHAGY-RELATED PROTEIN (ATG) genes. atg5/lip5 and atg7/lip5 double mutants displayed strong synergistic phenotypes in fitness characterized by stunted growth, early senescence, reduced survival, and greatly diminished seed production under normal growth conditions. Transcriptome and metabolite analysis revealed that chloroplast sulfate assimilation was specifically downregulated at early seedling stages in the atg7/lip5 double mutant prior to the onset of visible phenotypes. Overexpression of adenosine 5′-phosphosulfate reductase 1, a key enzyme in sulfate assimilation, substantially improved the growth and fitness of the atg7/lip5 double mutant. Comparative multi-omic analysis further revealed that the atg7/lip5 double mutant was strongly compromised in other chloroplast functions including photosynthesis and primary carbon metabolism. Premature senescence and reduced survival of atg/lip5 double mutants were associated withmore »increased accumulation of reactive oxygen species and overactivation of stress-associated programs. Blocking PHYTOALEXIN DEFICIENT 4 and salicylic acid signaling prevented early senescence and death of the atg7/lip5 double mutant. Thus, stress-responsive autophagy and MVB pathways play an important cooperative role in protecting essential chloroplast functions including sulfur assimilation under normal growth conditions to suppress salicylic-acid-dependent premature cell-death and promote plant growth and fitness.

    « less
  4. Abstract Generating cellular Ca2+ signals requires coordinated transport activities from both Ca2+ influx and efflux pathways. In Arabidopsis (Arabidopsis thaliana), multiple efflux pathways exist, some of which involve Ca2+-pumps belonging to the Autoinhibited Ca2+-ATPase (ACA) family. Here, we show that ACA1, 2, and 7 localize to the endoplasmic reticulum (ER) and are important for plant growth and pollen fertility. While phenotypes for plants harboring single-gene knockouts (KOs) were weak or undetected, a triple KO of aca1/2/7 displayed a 2.6-fold decrease in pollen transmission efficiency, whereas inheritance through female gametes was normal. The triple KO also resulted in smaller rosettes showing a high frequency of lesions. Both vegetative and reproductive phenotypes were rescued by transgenes encoding either ACA1, 2, or 7, suggesting that all three isoforms are biochemically redundant. Lesions were suppressed by expression of a transgene encoding NahG, an enzyme that degrades salicylic acid (SA). Triple KO mutants showed elevated mRNA expression for two SA-inducible marker genes, Pathogenesis-related1 (PR1) and PR2. The aca1/2/7 lesion phenotype was similar but less severe than SA-dependent lesions associated with a double KO of vacuolar pumps aca4 and 11. Imaging of Ca2+ dynamics triggered by blue light or the pathogen elicitor flg22 revealed that aca1/2/7more »mutants display Ca2+ transients with increased magnitudes and durations. Together, these results indicate that ER-localized ACAs play important roles in regulating Ca2+ signals, and that the loss of these pumps results in male fertility and vegetative growth deficiencies.« less
  5. Bacteria accumulate small, organic compounds, called compatible solutes, via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine ( ectABCasp_ect ) and glycine betaine ( betIBAproXWV ), four betaine-carnitine-choline transporters ( bcct1-bcct4 ) and a second ProU transporter ( proVWX). All of these systems are osmotically inducible with the exception of bcct2. Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABCasp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBAproXWV , bcct1 , bcct3 , bcct4 and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed expression of these systems is de-repressed in the mutant at low salinity compared to wild-type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli GFP reporter assays, we demonstrated that CosR directly represses transcription of betIBAproXWV , bcct3 , and proVWX . Similar to V. harveyi , we showedmore »betIBAproXWV was directly activated by the quorum sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family and bioinformatics analysis showed widespread distribution among Gamma-Proteobacteria in general. Incidentally, in Aliivibrio fischeri, A. finisterrensis, A. sifiae and A. wodanis , an unrelated MarR-type regulator named ectR was clustered with ectABC-asp , which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria. IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gamma - Proteobacteria . Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.« less