skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abstract 1315: Biophysics of polyploidal cancer cells in an aging stroma
Senescence is a potent tumor-suppressive mechanism that irreversibly arrests the growth of damaged cells. However, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype (SASP) that alters the microenvironment to promote cancer. Paracrine factors in the SASP may also contribute to the formation of rare giant polyploidal cancer cells (GPCCs). A single-cell mechanical approach was used to profile cytoskeletal and nuclear mechanics, morphology, motility, and adhesion for breast cancer cells treated with conditioned media from senescent fibroblasts. Our study showed that a small but significant population of MDA-MB-231 breast cancer cells (less than 5%) treated with conditioned media from senescent LF-1 fibroblasts develop an enlarged morphology, chromosomal instability, and polyploidy, a phenotype associated with GPCCs. Although GPCCs are highly invasive and chemoresistant, little is known about their biophysical properties. First, we developed a method for identifying the small subpopulation of GPCCs in a heterogeneous population of cancer cells based on increased nuclear area and confirmed that GPCCs are more resistant to paclitaxel than normal-size MDA-MB-231 cells (NCCs). We then compared critical biophysical properties of NCCs and GPCCs, including cytoskeletal and nuclear mechanics, cell and nuclear morphology, motility, and adhesion. Cells were stained for cytoskeletal proteins actin, tubulin, and vinculin. Cytoskeletal organization was dramatically altered in GPCCs compared to NCCs. GPCCs displayed more disorganized microtubule structure, dense actin stress fibers, and mature focal adhesions. Intracellular particle tracking microrheology was used to measure cytoskeletal and nuclear mechanics. These studies demonstrated that although GPCCs are thought to be highly invasive cancer cells, they are inherently stiffer than NCCs, in terms of both their cytoskeletal and nuclear mechanics. This was surprising since more invasive cancer cells are often more compliant than less invasive cancer cells. This result may be in part to the ability for GPCCs to behave like activated stromal cells that stiffen in the tumor; we confirmed that GPCCs display similar adhesive behavior as activated stromal cells. To determine how mechanics correlates with cell migration, we used time-lapse nuclear tracking to measure cell motility. The average cell speed was higher for NCCs than for GPCCs; however, GPCCs moved longer distances over time because their motion was more directional. These findings highlight the unusual biophysical behavior of GPCCs. To develop pharmacologic tools that target GPCCs, it is imperative to understand their biophysical properties.  more » « less
Award ID(s):
1825174
PAR ID:
10104956
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Cancer research
Volume:
78
Issue:
13
ISSN:
1538-7445
Page Range / eLocation ID:
1315
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Age is a leading risk factor for developing breast cancer. This may be in part to the time required for acquiring sufficient cancer mutations; however, stromal cells that accumulate in tissues and undergo senescence eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Our focus is on mesenchymal stem cells (MSCs) – stromal cells recruited to tumors due to their natural tropism for inflammatory tissues; MSCs have been shown to enhance the metastatic potential of tumor cells through direct interactions or paracrine signaling within the tumor. In the tumor, MSCs can differentiate into carcinoma-associated fibroblasts that play a central role in tumor growth and matrix remodeling. We recently investigated the molecular and mechanical differences in pre- and post- senescent MSCs and how their interactions with MDA-MB-231 breast cancer cells contribute to malignancy. Our data show post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than pre-senescent MSCs. In-depth omics analysis revealed differentially regulated genes and peptides including factors related to inflammatory cytokines, cell adhesion to the extracellular matrix, and cytoskeletal regulation. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on collagen matrix remodeling. Although post-senescent MSCs were far less motile than pre-senescent MSCs and less contractile with the matrix, they profoundly altered matrix protein deposition and crosslinking, which resulted in local matrix stiffening effects. Post-senescent MSCs also induced an invasive breast cancer cell phenotype, characterized by increased proliferation and invasion of breast cancer cells. This invasive breast cancer cell behavior was further amplified when MDA-MB-231 was co-cultured with a mixture of pre- and post- senescent MSCs; this result was attributed to matrix remodeling and soluble factor secretion effects of post-senescent MSCs, which enhanced the migration of pre-senescent MSCs allowing them to form tracks in the collagen network for cancer cells to follow. Finally, molecular inhibitors targeting actomyosin contractility and adhesion were used to alter MSC interactions with breast cancer cells. Actin depolymerizing agent and focal adhesion kinase inhibitor were most efficient and completely able to block the effects of post-senescent MSCs on MDA-MB-231 invasion in collagen gels. This comprehensive approach can be used to identify molecular pathways regulating heterotypic interactions of post-senescent MSCs with other cells in the tumor. Furthermore, the local matrix stiffening effect of post-senescent MSCs may play a critical role in breast cancer progression. 
    more » « less
  2. Mesenchymal stem cells (MSCs) that accumulate in the primary tumor due to their natural tropism for inflammatory tissues enhance the metastatic potential of tumor cells through direct interactions with tumor cells or paracrine signaling within the tumor microenvironment. MSCs also undergo senescence, which leads to increased production of pro-inflammatory cytokines and matrix-degrading enzymes. Senescence is a critical mechanism of limiting abnormal growth and cancer development through tumor suppression; however, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Increased understanding of the biophysical properties of senescent MSCs and how they mediate cell-cell interactions in the tumor may be useful in identifying novel biomarkers for senescent stromal cells in tissues or aggressive cancer cells that form in an aging stroma. A high-content single cell biophysical approach was used to define the mechanical properties of pre- and post- senescent MSCs. Our data shows post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than their pre-senescent counterparts. A robust molecular screening approach combining genome-wide microarray analysis with mass spec-based proteomics was used to establish the molecular differences in pre- and post- senescent MSCs. Our data show a consistent correlation of up and down regulated gene and peptide expression. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on breast cancer cell motility and invasion in 3D collagen gels. Post-senescent MSCs induced an invasive breast cancer cell phenotype, characterized by increased spreading of breast cancer cells in collagen, increased numbers of invading cells, and morphological elongation of breast cancer cells. Surprisingly, this invasive breast cancer cell behavior was further amplified when breast cancer cells were co-cultured with both pre- and post- senescent cells. 
    more » « less
  3. Xu, Jinbo (Ed.)
    Abstract Motivation Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the cancer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status: MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative, TN), MDA-MB-231 (TN) and BT549 (TN). Results The model successfully classified the trajectories within individual cell lines with 83% accuracy and predicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT) was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells, and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based cancer cell classifications are primarily based on the optical transmission images of cell morphology and the fluorescence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify cancer cells using a dynamic, biophysical feature that is readily accessible. Availability and implementation A python implementation of deep learning-based classification can be found at https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. Abstract During the migration of cancer cells for metastasis, cancer cells can be exposed to fluid shear conditions. We examined two breast cancer cell lines, MDA-MB-468 (less metastatic) and MDA-MB-231 (more metastatic), and a benign MCF-10A epithelial cell line for their responsiveness in migration to fluid shear. We tested fluid shear at 15 dyne/cm2 that can be encountered during breast cancer cells traveling through blood vessels or metastasizing to mechanically active tissues such as bone. MCF-10A exhibited the least migration with a trend of migrating in the flow direction. Intriguingly, fluid shear played a potent role as a trigger for MDA-MB-231 cell migration, inducing directional migration along the flow with significantly increased displacement length and migration speed and decreased arrest coefficient relative to unflowed MDA-MB-231. In contrast, MDA-MB-468 cells were markedly less migratory than MDA-MB-231 cells, and responded very poorly to fluid shear. As a result, MDA-MB-468 cells did not exhibit noticeable difference in migration between static and flow conditions, as was distinct in root-mean-square (RMS) displacement—an ensemble average of all participating cells. These may suggest that the difference between more metastatic MDA-MB-231 and less metastatic MDA-MB-468 breast cancer cells could be at least partly involved with their differential responsiveness to fluid shear stimulatory cues. Our study provides new data in regard to potential crosstalk between fluid shear and metastatic potential in mediating breast cancer cell migration. 
    more » « less
  5. Abstract Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro‐environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro‐environment is developed comprising of metastatic MDA‐MB‐231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer‐specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor‐associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration‐assisted bioprinting, cancer–endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom–up approach of tumor micro‐environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform. 
    more » « less