Tumor microenvironment is a complex niche consisting of cancer cells and stromal cells in a network of extracellular matrix proteins and various soluble factors. Dynamic interactions among cellular and non-cellular components of the tumor microenvironment regulate tumor initiation and progression. Fibroblasts are the most abundant stromal cell type and dynamically interact with cancer cells both in primary tumors and in metastases. Cancer cells activate resident fibroblasts to produce and secrete soluble signaling molecules that support proliferation, migration, matrix invasion, and drug resistance of cancer cell and tumor angiogenesis. In recent years, various forms of three-dimensional tumor models have been developed to study tumor–stromal interactions and to identify anti-cancer drugs that block these interactions. There is currently a technological gap in development of tumor models that are physiologically relevant, scalable, and allow convenient, on-demand addition of desired components of the tumor microenvironment. In this review, we discuss three studies from our group that focus on developing bioengineered models to study tumor-stromal signaling. We will present these studies chronologically and based on their increasing complexity. We will discuss the validation of the models using a CXCL12-CXCR4 chemokine-receptor signaling present among activated fibroblasts and breast cancer cells in solid tumors, highlight the advantages and shortcomings of the models, and conclude with our perspectives on their applications. Impact statement Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs. 
                        more » 
                        « less   
                    
                            
                            Studying Tumor Angiogenesis and Cancer Invasion in a Three‐Dimensional Vascularized Breast Cancer Micro‐Environment
                        
                    
    
            Abstract Metastatic breast cancer is one of the deadliest forms of malignancy, primarily driven by its characteristic micro‐environment comprising cancer cells interacting with stromal components. These interactions induce genetic and metabolic alterations creating a conducive environment for tumor growth. In this study, a physiologically relevant 3D vascularized breast cancer micro‐environment is developed comprising of metastatic MDA‐MB‐231 cells and human umbilical vein endothelial cells loaded in human dermal fibroblasts laden fibrin, representing the tumor stroma. The matrix, as well as stromal cell density, impacts the transcriptional profile of genes involved in tumor angiogenesis and cancer invasion, which are hallmarks of cancer. Cancer‐specific canonical pathways and activated upstream regulators are also identified by the differential gene expression signatures of these composite cultures. Additionally, a tumor‐associated vascular bed of capillaries is established exhibiting dilated vessel diameters, representative of in vivo tumor physiology. Further, employing aspiration‐assisted bioprinting, cancer–endothelial crosstalk, in the form of collective angiogenesis of tumor spheroids bioprinted at close proximity, is identified. Overall, this bottom–up approach of tumor micro‐environment fabrication provides an insight into the potential of in vitro tumor models and enables the identification of novel therapeutic targets as a preclinical drug screening platform. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10363024
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Biology
- Volume:
- 5
- Issue:
- 7
- ISSN:
- 2701-0198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Cancer nanomedicines predominately rely on transport processes controlled by tumor‐associated endothelial cells to deliver therapeutic and diagnostic payloads into solid tumors. While the dominant role of this class of endothelial cells for nanoparticle transport and tumor delivery is established in animal models, the translational potential in human cells needs exploration. Using primary human breast cancer as a model, the differential interactions of normal and tumor‐associated endothelial cells with clinically relevant nanomedicine formulations are explored and quantified. Primary human breast cancer‐associated endothelial cells exhibit up to ≈2 times higher nanoparticle uptake than normal human mammary microvascular endothelial cells. Super‐resolution imaging studies reveal a significantly higher intracellular vesicle number for tumor‐associated endothelial cells, indicating a substantial increase in cellular transport activities. RNA sequencing and gene expression analysis indicate the upregulation of transport‐related genes, especially motor protein genes, in tumor‐associated endothelial cells. Collectively, the results demonstrate that primary human breast cancer‐associated endothelial cells exhibit enhanced interactions with nanomedicines, suggesting a potentially significant role for these cells in nanoparticle tumor delivery in human patients. Engineering nanoparticles that leverage the translational potential of tumor‐associated endothelial cell‐mediated transport into human solid tumors may lead to the development of safer and more effective clinical cancer nanomedicines.more » « less
- 
            Abstract Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple‐negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple‐negative breast cancer extravasation, as these mechanisms may be potential new targets for anti‐metastasis therapy.more » « less
- 
            Mesenchymal stem cells (MSCs) that accumulate in the primary tumor due to their natural tropism for inflammatory tissues enhance the metastatic potential of tumor cells through direct interactions with tumor cells or paracrine signaling within the tumor microenvironment. MSCs also undergo senescence, which leads to increased production of pro-inflammatory cytokines and matrix-degrading enzymes. Senescence is a critical mechanism of limiting abnormal growth and cancer development through tumor suppression; however, senescent cells that accumulate in tissues eventually develop a senescence-associated secretory phenotype that alters the microenvironment to promote cancer. Increased understanding of the biophysical properties of senescent MSCs and how they mediate cell-cell interactions in the tumor may be useful in identifying novel biomarkers for senescent stromal cells in tissues or aggressive cancer cells that form in an aging stroma. A high-content single cell biophysical approach was used to define the mechanical properties of pre- and post- senescent MSCs. Our data shows post-senescent MSCs are larger and less motile, with more homogeneous mechanical properties than their pre-senescent counterparts. A robust molecular screening approach combining genome-wide microarray analysis with mass spec-based proteomics was used to establish the molecular differences in pre- and post- senescent MSCs. Our data show a consistent correlation of up and down regulated gene and peptide expression. A 3D co-culture model was used to assess the effects of pre- and post- senescent MSCs on breast cancer cell motility and invasion in 3D collagen gels. Post-senescent MSCs induced an invasive breast cancer cell phenotype, characterized by increased spreading of breast cancer cells in collagen, increased numbers of invading cells, and morphological elongation of breast cancer cells. Surprisingly, this invasive breast cancer cell behavior was further amplified when breast cancer cells were co-cultured with both pre- and post- senescent cells.more » « less
- 
            Abstract Breast cancer metastasis occurs via blood and lymphatic vessels. Breast cancer cells ‘educate’ lymphatic endothelial cells (LECs) to support tumor vascularization and growth. However, despite known metabolic alterations in breast cancer, it remains unclear how lymphatic endothelial cell metabolism is altered in the tumor microenvironment and its effect in lymphangiogenic signaling in LECs. We analyzed metabolites inside LECs in co-culture with MCF-7, MDA-MB-231, and SK-BR-3 breast cancer cell lines using $$^1\hbox {H}$$ 1 H nuclear magnetic resonance (NMR) metabolomics, Seahorse, and the spatial distribution of metabolic co-enzymes using optical redox ratio imaging to describe breast cancer-LEC metabolic crosstalk. LECs co-cultured with breast cancer cells exhibited cell-line dependent altered metabolic profiles, including significant changes in lactate concentration in breast cancer co-culture. Cell metabolic phenotype analysis using Seahorse showed LECs in co-culture exhibited reduced mitochondrial respiration, increased reliance on glycolysis and reduced metabolic flexibility. Optical redox ratio measurements revealed reduced NAD(P)H levels in LECs potentially due to increased NAD(P)H utilization to maintain redox homeostasis. $$^{13}\hbox {C}$$ 13 C -labeled glucose experiments did not reveal lactate shuttling into LECs from breast cancer cells, yet showed other $$^{13}\hbox {C}$$ 13 C signals in LECs suggesting internalized metabolites and metabolic exchange between the two cell types. We also determined that breast cancer co-culture stimulated lymphangiogenic signaling in LECs, yet activation was not stimulated by lactate alone. Increased lymphangiogenic signaling suggests paracrine signaling between LECs and breast cancer cells which could have a pro-metastatic role.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
