Introduction As mobile robots proliferate in communities, designers must consider the impacts these systems have on the users, onlookers, and places they encounter. It becomes increasingly necessary to study situations where humans and robots coexist in common spaces, even if they are not directly interacting. This dataset presents a multidisciplinary approach to study human-robot encounters in an indoor apartment-like setting between participants and two mobile robots. Participants take questionnaires, wear sensors for physiological measures, and take part in a focus group after experiments finish. This dataset contains raw time series data from sensors and robots, and qualitative results from focus groups. The data can be used to analyze measures of human physiological response to varied encounter conditions, and to gain insights into human preferences and comfort during community encounters with mobile robots. Dataset Contents A dictionary of terms found in the dataset can be found in the "Data-Dictionary.pdf" Synchronized XDF files from every trial with raw data from electrodermal activity (EDA), electrocardiography (ECG), photoplethysmography (PPG) and seismocardiography (SCG). These synchronized files also contain robot pose data and microphone data. Results from analysis of two important features found from heart rate variability (HRV) and EDA. Specifically, HRV_CMSEn and nsEDRfreq is computed for each participant over each trial. These results also include Robot Confidence, which is a classification score representing the confidence that the 80 physiological features considered originate from a subject in a robot encounter. The higher the score, the higher the confidence A vectormap of the environment used during testing ("AHG_vectormap.txt") and a csv with locations of participant seating within the map ("Participant-Seating-Coordinates.csv"). Each line of the vectormap represents two endpoints of a line: x1,y1,x2,y2. The coordinates of participant seating are x,y positions and rotation about the vertical axis in radians. Anonymized videos captured using two static cameras placed in the environment. They are located in the living room and small room, respectively. Animations visualized from XDF files that show participant location, robot behaviors and additional characteristics like participant-robot line-of-sight and relative audio volume. Quotes associated with themes taken from focus group data. These quotes demonstrate and justify the results of the thematic analysis. Raw text from focus groups is not included for privacy concerns. Quantitative results from focus groups associated with factors influencing perceived safety. These results demonstrate the findings from deductive content analysis. The deductive codebook is also included. Results from pre-experiment and between-trial questionnaires Copies of both questionnaires and the semi-structured focus group protocol. Human Subjects This dataset contain de-identified information for 24 total subjects over 13 experiment sessions. The population for the study is the students, faculty and staff at the University of Texas at Austin. Of the 24 participants, 18 are students and 6 are staff at the university. Ages range from 19-48 and there are 10 males and 14 females who participated. Published data has been de-identified in coordination with the university Internal Review Board. All participants signed informed consent to participate in the study and for the distribution of this data. Access Restrictions Transcripts from focus groups are not published due to privacy concerns. Videos including participants are de-identified with overlays on videos. All other data is labeled only by participant ID, which is not associated with any identifying characteristics. Experiment Design Robots This study considers indoor encounters with two quadruped mobile robots. Namely, the Boston Dynamics Spot and Unitree Go1. These mobile robots are capable of everyday movement tasks like inspection, search or mapping which may be common tasks for autonomous agents in university communities. The study focus on perceived safety of bystanders under encounters with these relevant platforms. Control Conditions and Experiment Session Layout We control three variables in this study: Participant seating social (together in the living room) v. isolated (one in living room, other in small room) Robots Together v. Separate Robot Navigation v. Search Behavior A visual representation of the three control variables are shown on the left in (a)-(d) including the robot behaviors and participant seating locations, shown as X's. Blue represent social seating and yellow represent isolated seating. (a) shows the single robot navigation path. (b) is the two robot navigation paths. In (c) is the single robot search path and (d) shows the two robot search paths. The order of behaviors and seating locations are randomized and then inserted into the experiment session as overviewed in (e). These experiments are designed to gain insights into human responses to encounters with robots. The first step is receiving consent from the followed by a pre-experiment questionnaire that documents demographics, baseline stress information and big 5 personality traits. The nature video is repeated before and after the experimental session to establish a relaxed baseline physiological state. Experiments take place over 8 individual trials, which are defined by a subject seat arrangement, search or navigation behavior, and robots together or separate. After each of the 8 trials, participants take the between trial questionnaire, which is a 7 point Likert scale questionnaire designed to assess perceived safety during the preceding trial. After experiments and sensor removal, participants take part in a focus group. Synchronized Data Acquisition Data is synchronized from physiological sensors, environment microphones and the robots using the architecture shown. These raw xdf files are named using the following file naming convention: Trials where participants sit together in the living room [Session number]-[trial number]-social-[robots together or separate]-[search or navigation behavior].xdf Trials where participants are isolated [Session number]-[trial number]-isolated-[subject ID living room]-[subject ID small room]-[robots together or separate]-[search or navigation behavior].xdf Qualitative Data Qualitative data is obtained from focus groups with participants after experiments. Typically, two participants take part however two sessions only included one participant. The semi-structured focus group protocol can be found in the dataset. Two different research methods are applied to focus group transcripts. Note: the full transcripts are not provided for privacy concerns. First, we performed a qualitative content analysis using deductive codes found from an existing model of perceived safety during HRI (Akalin et al. 2023). The quantitative results from this analysis are reported as frequencies of references to the various factors of perceived safety. The codebook describing these factors is included in the dataset. Second, an inductive thematic analysis was performed on the data to identify emergent themes. The resulting themes and associated quotes taken from focus groups are also included. Data Organization Data is organized in separate folders, namely: animation-videos anonymized-session-videos focus-group-results questionnaire-responses research-materials signal-analysis-results synchronized-xdf-data Data Quality Statement In limited trials, participant EDA or ECG signals or robot pose information may be missing due to connectivity issues during data acquisition. Additionally, the questionnaires for Participant ID0 and ID1 are incomplete due to an error in the implementation of the Qualtrics survey instrument used.
more »
« less
From One to Another: How Robot-Robot Interaction Affects Users' Perceptions Following a Transition Between Robots
Human-robot interactions that involve multiple robots are becoming common. It is crucial to understand how multiple robots should transfer information and transition users between them. To investigate this, we designed a 3 x 3 mixed design study in which participants took part in a navigation task. Participants interacted with a stationary robot who summoned a functional (not explicitly social) mobile robot to guide them. Each participant experienced the three types of robot-robot interaction: representative (the stationary robot spoke to the participant on behalf of the mobile robot), direct (the stationary robot delivered the request to the mobile robot in a straightforward manner), and social (the stationary robot delivered the request to the mobile robot in a social manner). Each participant witnessed only one type of robot-robot communication: silent (the robots covertly communicated), explicit (the robots acknowledged that they were communicating), or reciting (the stationary robot said the request aloud). Our results show that it is possible to instill socialness in and improve likability of a functional robot by having a social robot interact socially with it. We also found that covertly exchanging information is less desirable than reciting information aloud.
more »
« less
- Award ID(s):
- 1734456
- PAR ID:
- 10105117
- Date Published:
- Journal Name:
- ACM/IEEE Conference on Human-Robot Interaction
- Page Range / eLocation ID:
- 114 to 122
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning (human-robot-IoT) with one single AR-SLAM device. Users can perform task authoring in an analogous manner with the Augmented Reality (AR) interface. Then placing the device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot and IoT oriented tasks, and guides the path planning execution with the SLAM capability.more » « less
-
null (Ed.)In this experiment, we investigated how a robot’s violation of several social norms influences human engagement with and perception of that robot. Each participant in our study (n = 80) played 30 rounds of rock-paper-scissors with a robot. In the three experimental conditions, the robot violated a social norm by cheating, cursing, or insulting the participant during gameplay. In the control condition, the robot conducted a non-norm violating behavior by stretching its hand. During the game, we found that participants had strong emotional reactions to all three social norm violations. However, participants spoke more words to the robot only after it cheated. After the game, participants were more likely to describe the robot as an agent only if they were in the cheating condition. These results imply that while social norm violations do elicit strong immediate reactions, only cheating elicits a significantly stronger prolonged perception of agency.more » « less
-
Collaborative robots that work alongside humans will experience service breakdowns and make mistakes. These robotic failures can cause a degradation of trust between the robot and the community being served. A loss of trust may impact whether a user continues to rely on the robot for assistance. In order to improve the teaming capabilities between humans and robots, forms of communication that aid in developing and maintaining trust need to be investigated. In our study, we identify four forms of communication which dictate the timing of information given and type of initiation used by a robot. We investigate the effect that these forms of communication have on trust with and without robot mistakes during a cooperative task. Participants played a memory task game with the help of a humanoid robot that was designed to make mistakes after a certain amount of time passed. The results showed that participants' trust in the robot was better preserved when that robot offered advice only upon request as opposed to when the robot took initiative to give advice.more » « less
-
We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning , the human, robot and IoT, with one single mobile AR device. Users can perform task authoring with the Augmented Reality (AR) handheld interface, then placing the AR device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot, and the IoT oriented tasks, and guides the path planning execution with the embedded simultaneous localization and mapping (SLAM) capability. We demonstrate that V.Ra enables instant, robust and intuitive room-scale navigatory and interactive task authoring through various use cases and preliminary studies.more » « less
An official website of the United States government

