skip to main content


Title: Perceived Agency of a Social Norm Violating Robot
In this experiment, we investigated how a robot’s violation of several social norms influences human engagement with and perception of that robot. Each participant in our study (n = 80) played 30 rounds of rock-paper-scissors with a robot. In the three experimental conditions, the robot violated a social norm by cheating, cursing, or insulting the participant during gameplay. In the control condition, the robot conducted a non-norm violating behavior by stretching its hand. During the game, we found that participants had strong emotional reactions to all three social norm violations. However, participants spoke more words to the robot only after it cheated. After the game, participants were more likely to describe the robot as an agent only if they were in the cheating condition. These results imply that while social norm violations do elicit strong immediate reactions, only cheating elicits a significantly stronger prolonged perception of agency.  more » « less
Award ID(s):
1813651
NSF-PAR ID:
10284325
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Annual Meeting of the Cognitive Science Society
Page Range / eLocation ID:
1480-6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Working in a fast-paced environment can lead to shallow breathing, which can exacerbate stress and anxiety. To address this issue, this study aimed to develop micro-interventions that can promote deep breathing in the presence of stressors. First, we examined two types of breathing guides to help individuals learn deep breathing: providing their breathing rate as a biofeedback signal, and providing a pacing signal to which they can synchronize their breathing. Second, we examined the extent to which these two breathing guides can be integrated into a casual game, to increase enjoyment and skill transfer. We used a 2 × 2 factorial design, with breathing guide (biofeedback vs. pacing) and gaming (game vs. no game) as independent factors. This led to four experimental groups: biofeedback alone, biofeedback integrated into a game, pacing alone, and pacing integrated into a game. In a first experiment, we evaluated the four experimental treatments in a laboratory setting, where 30 healthy participants completed a stressful task before and after performing one of the four treatments (or a control condition) while wearing a chest strap that measured their breathing rate. Two-way ANOVA of breathing rates, with treatment (5 groups) and time (pre-test, post-test) as independent factors shows a significant effect for time [ F (4, 50) = 18.49, p < 0.001, η t i m e 2 = 0 . 27 ] and treatment [ F (4, 50) = 2.54, p = 0.05, η 2 = 0.17], but no interaction effects. Post-hoc t-tests between pre and post-test breathing rates shows statistical significance for the game with biofeedback group [ t (5) = 5.94, p = 0.001, d = 2.68], but not for the other four groups, indicating that only game with biofeedback led to skill transfer at post-test. Further, two-way ANOVA of self-reported enjoyment scores on the four experimental treatments, with breathing guide and game as independent factors, found a main effect for game [ F ( 1 , 20 ) = 24 . 49 , p < 0 . 001 ,   η g a m e 2 = 0 . 55 ], indicating that the game-based interventions were more enjoyable than the non-game interventions. In a second experiment, conducted in an ambulatory setting, 36 healthy participants practiced one of the four experimental treatments as they saw fit over the course of a day. We found that the game-based interventions were practiced more often than the non-game interventions [ t (34) = 1.99, p = 0.027, d = 0.67]. However, we also found that participants in the game-based interventions could only achieve deep breathing 50% of the times, whereas participants in the non-game groups succeeded 85% of the times, which indicated that the former need adequate training time to be effective. Finally, participant feedback indicated that the non-game interventions were better at promoting in-the-moment relaxation, whereas the game-based interventions were more successful at promoting deep breathing during stressful tasks. 
    more » « less
  2. This study evaluated how a robot demonstrating a Theory of Mind (ToM) influenced human perception of social intelligence and animacy in a human-robot interaction. Data was gathered through an online survey where participants watched a video depicting a NAO robot either failing or passing the Sally-Anne false-belief task. Participants (N = 60) were randomly assigned to either the Pass or Fail condition. A Perceived Social Intelligence Survey and the Perceived Intelligence and Animacy subsections of the Godspeed Questionnaire were used as measures. The Godspeed was given before viewing the task to measure participant expectations, and again after to test changes in opinion. Our findings show that robots demonstrating ToM significantly increase perceived social intelligence, while robots demonstrating ToM deficiencies are perceived as less socially intelligent. 
    more » « less
  3. null (Ed.)
    We examined whether a robot that proactively offers moral advice promoting the norm of honesty can discourage people from cheating. Participants were presented with an opportunity to cheat in a die-rolling game. Prior to playing the game, participants received from either a NAO robot or a human, a piece of moral advice grounded in either deontological, virtue, or Confucian role ethics, or did not receive any advice. We found that moral advice grounded in Confucian role ethics could reduce cheating when the advice was delivered by a human. No advice was effective when a robot delivered moral advice. These findings highlight challenges in building robots that can possibly guide people to follow moral norms. 
    more » « less
  4. Background: Drivers gather most of the information they need to drive by looking at the world around them and at visual displays within the vehicle. Navigation systems automate the way drivers navigate. In using these systems, drivers offload both tactical (route following) and strategic aspects (route planning) of navigational tasks to the automated SatNav system, freeing up cognitive and attentional resources that can be used in other tasks (Burnett, 2009). Despite the potential benefits and opportunities that navigation systems provide, their use can also be problematic. For example, research suggests that drivers using SatNav do not develop as much environmental spatial knowledge as drivers using paper maps (Waters & Winter, 2011; Parush, Ahuvia, & Erev, 2007). With recent growth and advances of augmented reality (AR) head-up displays (HUDs), there are new opportunities to display navigation information directly within a driver’s forward field of view, allowing them to gather information needed to navigate without looking away from the road. While the technology is promising, the nuances of interface design and its impacts on drivers must be further understood before AR can be widely and safely incorporated into vehicles. Specifically, an impact that warrants investigation is the role of AR HUDS in spatial knowledge acquisition while driving. Acquiring high levels of spatial knowledge is crucial for navigation tasks because individuals who have greater levels of spatial knowledge acquisition are more capable of navigating based on their own internal knowledge (Bolton, Burnett, & Large, 2015). Moreover, the ability to develop an accurate and comprehensive cognitive map acts as a social function in which individuals are able to navigate for others, provide verbal directions and sketch direction maps (Hill, 1987). Given these points, the relationship between spatial knowledge acquisition and novel technologies such as AR HUDs in driving is a relevant topic for investigation. Objectives: This work explored whether providing conformal AR navigational cues improves spatial knowledge acquisition (as compared to traditional HUD visual cues) to assess the plausibility and justification for investment in generating larger FOV AR HUDs with potentially multiple focal planes. Methods: This study employed a 2x2 between-subjects design in which twenty-four participants were counterbalanced by gender. We used a fixed base, medium fidelity driving simulator for where participants drove while navigating with one of two possible HUD interface designs: a world-relative arrow post sign and a screen-relative traditional arrow. During the 10-15 minute drive, participants drove the route and were encouraged to verbally share feedback as they proceeded. After the drive, participants completed a NASA-TLX questionnaire to record their perceived workload. We measured spatial knowledge at two levels: landmark and route knowledge. Landmark knowledge was assessed using an iconic recognition task, while route knowledge was assessed using a scene ordering task. After completion of the study, individuals signed a post-trial consent form and were compensated $10 for their time. Results: NASA-TLX performance subscale ratings revealed that participants felt that they performed better during the world-relative condition but at a higher rate of perceived workload. However, in terms of perceived workload, results suggest there is no significant difference between interface design conditions. Landmark knowledge results suggest that the mean number of remembered scenes among both conditions is statistically similar, indicating participants using both interface designs remembered the same proportion of on-route scenes. Deviance analysis show that only maneuver direction had an influence on landmark knowledge testing performance. Route knowledge results suggest that the proportion of scenes on-route which were correctly sequenced by participants is similar under both conditions. Finally, participants exhibited poorer performance in the route knowledge task as compared to landmark knowledge task (independent of HUD interface design). Conclusions: This study described a driving simulator study which evaluated the head-up provision of two types of AR navigation interface designs. The world-relative condition placed an artificial post sign at the corner of an approaching intersection containing a real landmark. The screen-relative condition displayed turn directions using a screen-fixed traditional arrow located directly ahead of the participant on the right or left side on the HUD. Overall results of this initial study provide evidence that the use of both screen-relative and world-relative AR head-up display interfaces have similar impact on spatial knowledge acquisition and perceived workload while driving. These results contrast a common perspective in the AR community that conformal, world-relative graphics are inherently more effective. This study instead suggests that simple, screen-fixed designs may indeed be effective in certain contexts. 
    more » « less
  5. As the influence of social robots in people’s daily lives grows, research on understanding people’s perception of robots including sociability, trust, acceptance, and preference becomes more pervasive. Research has considered visual, vocal, or tactile cues to express robots’ emotions, whereas little research has provided a holistic view in examining the interactions among different factors influencing emotion perception. We investigated multiple facets of user perception on robots during a conversational task by varying the robots’ voice types, appearances, and emotions. In our experiment, 20 participants interacted with two robots having four different voice types. While participants were reading fairy tales to the robot, the robot gave vocal feedback with seven emotions and the participants evaluated the robot’s profiles through post surveys. The results indicate that (1) the accuracy of emotion perception differed depending on presented emotions, (2) a regular human voice showed higher user preferences and naturalness, (3) but a characterized voice was more appropriate for expressing emotions with significantly higher accuracy in emotion perception, and (4) participants showed significantly higher emotion recognition accuracy with the animal robot than the humanoid robot. A follow-up study ([Formula: see text]) with voice-only conditions confirmed that the importance of embodiment. The results from this study could provide the guidelines needed to design social robots that consider emotional aspects in conversations between robots and users. 
    more » « less