skip to main content

Title: Smooth neighborhood recommender systems.
Recommender systems predict users’ preferences over a large number of items by pooling similar information from other users and/or items in the presence of sparse observations. One major challenge is how to utilize user-item specific covariates and networks describing user-item interactions in a high-dimensional situation, for accurate personalized prediction. In this article, we propose a smooth neighborhood recommender in the framework of the latent factor models. A similarity kernel is utilized to borrow neighborhood information from continuous covariates over a user-item specific network, such as a user’s social network, where the grouping information defined by discrete covariates is also integrated through the network. Consequently, user-item specific information is built into the recommender to battle the ‘cold-start” issue in the absence of observations in collaborative and content- based filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least squares algorithm to achieve scalable computation, and establish asymptotic results for the proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we illustrate that the proposed method improves substantially over its competitors in simulated examples and real benchmark data–Last.fm music data.
Authors:
; ; ;
Award ID(s):
1821198 2019461
Publication Date:
NSF-PAR ID:
10105261
Journal Name:
Journal of machine learning research
Volume:
20
Page Range or eLocation-ID:
1-24
ISSN:
1532-4435
Sponsoring Org:
National Science Foundation
More Like this
  1. Recommender systems predict users’ preferences over a large number of items by pooling similar information from other users and/or items in the presence of sparse observations. One major challenge is how to utilize user-item specific covariates and networks describing user-item interactions in a high-dimensional situation, for accurate personalized prediction. In this article, we propose a smooth neighborhood recommender in the framework of the latent factor models. A similarity kernel is utilized to borrow neighborhood information from continuous covariates over a user-item specific network, such as a user’s social network, where the grouping information defined by discrete covariates is also integrated through the network. Consequently, user-item specific information is built into the recommender to battle the ‘cold-start” issue in the absence of observations in collaborative and contentbased filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least squares algorithm to achieve scalable computation, and establish asymptotic results for the proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we illustrate that the proposed method improves substantially over its competitors in simulated examples and real benchmark data–Last.fm music data.
  2. Latent factor models have become a prevalent method in recommender systems, to predict users' preference on items based on the historical user feedback. Most of the existing methods, explicitly or implicitly, are built upon the first-order rating distance principle, which aims to minimize the difference between the estimated and real ratings. In this paper, we generalize such first-order rating distance principle and propose a new latent factor model (HoORaYs) for recommender systems. The core idea of the proposed method is to explore high-order rating distance, which aims to minimize not only (i) the difference between the estimated and real ratings of the same (user, item) pair (i.e., the first-order rating distance), but also (ii) the difference between the estimated and real rating difference of the same user across different items (i.e., the second-order rating distance). We formulate it as a regularized optimization problem, and propose an effective and scalable algorithm to solve it. Our analysis from the geometry and Bayesian perspectives indicate that by exploring the high-order rating distance, it helps to reduce the variance of the estimator, which in turns leads to better generalization performance (e.g., smaller prediction error). We evaluate the proposed method on four real-world data sets,more »two with explicit user feedback and the other two with implicit user feedback. Experimental results show that the proposed method consistently outperforms the state-of-the-art methods in terms of the prediction accuracy.« less
  3. Context has been recognized as an important factor to consider in personalized recommender systems. Particularly in location-based services (LBSs), a fundamental task is to recommend to a mobile user where he/she could be interested to visit next at the right time. Additionally, location-based social networks (LBSNs) allow users to share location-embedded information with friends who often co-occur in the same or nearby points-of-interest (POIs) or share similar POI visiting histories, due to the social homophily theory and Tobler’s first law of geography. So, both the time information and LBSN friendship relations should be utilized for POI recommendation. Tensor completion has recently gained some attention in time-aware recommender systems. The problem decomposes a user-item-time tensor into low-rank embedding matrices of users, items and times using its observed entries, so that the underlying low-rank subspace structure can be tracked to fill the missing entries for time-aware recommendation. However, these tensor completion methods ignore the social-spatial context information available in LBSNs, which is important for POI recommendation since people tend to share their preferences with their friends, and near things are more related than distant things. In this paper, we utilize the side information of social networks and POI locations to enhance themore »tensor completion model paradigm for more effective time-aware POI recommendation. Specifically, we propose a regularization loss head based on a novel social Hausdorff distance function to optimize the reconstructed tensor. We also quantify the popularity of different POIs with location entropy to prevent very popular POIs from being over-represented hence suppressing the appearance of other more diverse POIs. To address the sensitivity of negative sampling, we train the model on the whole data by treating all unlabeled entries in the observed tensor as negative, and rewriting the loss function in a smart way to reduce the computational cost. Through extensive experiments on real datasets, we demonstrate the superiority of our model over state-of-the-art tensor completion methods.« less
  4. Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users’ social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN.
  5. Matrix completion is a well-known approach for recommender systems. It predicts the values of the missing entries in a sparse user-item interaction matrix, based on the low-rank structure of the rating matrix. However, existing matrix completion methods do not take node polysemy and side information of social relationships into consideration, which can otherwise further improve the performance. In this paper, we propose a novel matrix completion method that employs both users’ friendships and rating entries to predict the missing values in a user-item matrix. Our approach adopts a graph-based modeling where nodes are users and items, and two types of edges are considered: user friendships and user-item interactions. Polysemy-aware node features are extracted from this heterogeneous graph through a graph convolution network by considering the multifaceted factors for edge formation, which are then connected to a hybrid loss function with two heads: (1) a social-homophily head to address node polysemy, and (2) an error head for user-item rating regression. The latter is formulated on all matrix entries to combat the sensitivity of negative sampling of the vast majority of missing entries during training, with a smart technique to reduce the time complexity. Extensive experiments over real datasets verify that ourmore »model outperforms the state-of-the-art matrix completion methods by a significant margin.« less