skip to main content


Title: PIXEL-WISE NEURAL CELL INSTANCE SEGMENTATION
Accurate cell instance segmentation plays an important role in the study of neural cell interactions, which are critical for understanding the development of brain. These interactions are performed through the filopodia and lamellipodia of neural cells, which are extremely tiny structures and as a result render most existing instance segmentation methods powerless to precisely capture them. To solve this issue, in this paper we present a novel hierarchical neural network comprising object detection and segmentation modules. Compared to previous work, our model is able to efficiently share and make full use of the information at different levels between the two modules. Our method is simple yet powerful, and experimental results show that it captures the contours of neural cells, especially the filopodia and lamellipodia, with high accuracy, and outperforms recent state of the art by a large margin.  more » « less
Award ID(s):
1747778
NSF-PAR ID:
10105302
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Instance segmentation of neural cells plays an important role in brain study. However, this task is challenging due to the special shapes and behaviors of neural cells. Existing methods are not precise enough to capture their tiny structures, e.g., filopodia and lamellipodia, which are critical to the understanding of cell interaction and behavior. To this end, we propose a novel deep multi-task learning model to jointly detect and segment neural cells instance-wise. Our method is built upon SSD, with ResNet101 as the backbone to achieve both high detection accuracy and fast speed. Furthermore, unlike existing works which tend to produce wavy and inaccurate boundaries, we embed a deconvolution module into SSD to better capture details. Experiments on a dataset of neural cell microscopic images show that our method is able to achieve better per- formance in terms of accuracy and efficiency, comparing favorably with current state-of-the-art methods. 
    more » « less
  2. Neural cell instance segmentation serves as a valuable tool for the study of neural cell behaviors. In general, the instance segmentation methods compute the region of interest (ROI) through a detection module, where the segmentation is sub- sequently performed. To precisely segment the neural cells, especially their tiny and slender structures, existing work em- ploys a u-net structure to preserve the low-level details and encode the high-level semantics. However, such method is insufficient for differentiating the adjacent cells when large parts of them are included in the same cropped ROI. To solve this problem, we propose a context-refined neural cell instance segmentation model that learns to suppress the back- ground information. In particular, we employ a light-weight context refinement module to recalibrate the deep features and focus the model exclusively on the target cell within each cropped ROI. The proposed model is efficient and accurate, and experimental results demonstrate its superiority com- pared to the state-of-the-arts. 
    more » « less
  3. Most existing methods handle cell instance segmentation problems directly without relying on additional detection boxes. These methods generally fails to separate touching cells due to the lack of global understanding of the objects. In contrast, box-based instance segmentation solves this problem by combining object detection with segmentation. However, existing methods typically utilize anchor box-based detectors, which would lead to inferior instance segmentation performance due to the class imbalance issue. In this paper, we propose a new box-based cell instance segmentation method. In particular, we first detect the five pre-defined points of a cell via keypoints detection. Then we group these points according to a keypoint graph and subsequently extract the bounding box for each cell. Finally, cell segmentation is performed on feature maps within the bounding boxes. We validate our method on two cell datasets with distinct object shapes, and empirically demonstrate the superiority of our method compared to other instance segmentation techniques. 
    more » « less
  4. How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.

     
    more » « less
  5. Fadlelmola, Faisal Mohamed (Ed.)
    Sickle cell disease, a genetic disorder affecting a sizeable global demographic, manifests in sickle red blood cells (sRBCs) with altered shape and biomechanics. sRBCs show heightened adhesive interactions with inflamed endothelium, triggering painful vascular occlusion events. Numerous studies employ microfluidic-assay-based monitoring tools to quantify characteristics of adhered sRBCs from high resolution channel images. The current image analysis workflow relies on detailed morphological characterization and cell counting by a specially trained worker. This is time and labor intensive, and prone to user bias artifacts. Here we establish a morphology based classification scheme to identify two naturally arising sRBC subpopulations—deformable and non-deformable sRBCs—utilizing novel visual markers that link to underlying cell biomechanical properties and hold promise for clinically relevant insights. We then set up a standardized, reproducible, and fully automated image analysis workflow designed to carry out this classification. This relies on a two part deep neural network architecture that works in tandem for segmentation of channel images and classification of adhered cells into subtypes. Network training utilized an extensive data set of images generated by the SCD BioChip, a microfluidic assay which injects clinical whole blood samples into protein-functionalized microchannels, mimicking physiological conditions in the microvasculature. Here we carried out the assay with the sub-endothelial protein laminin. The machine learning approach segmented the resulting channel images with 99.1±0.3% mean IoU on the validation set across 5 k -folds, classified detected sRBCs with 96.0±0.3% mean accuracy on the validation set across 5 k -folds, and matched trained personnel in overall characterization of whole channel images with R 2 = 0.992, 0.987 and 0.834 for total, deformable and non-deformable sRBC counts respectively. Average analysis time per channel image was also improved by two orders of magnitude (∼ 2 minutes vs ∼ 2-3 hours) over manual characterization. Finally, the network results show an order of magnitude less variance in counts on repeat trials than humans. This kind of standardization is a prerequisite for the viability of any diagnostic technology, making our system suitable for affordable and high throughput disease monitoring. 
    more » « less