Parallel magnetic resonance imaging (MRI) is a widely-used technique that accelerates data collection by making use of the spatial encoding provided by multiple receiver coils. A key issue in parallel MRI is the estimation of coil sensitivity maps (CSMs) that are used for reconstructing a single high-quality image. This paper addresses this issue by developing SS-JIRCS, a new self-supervised model-based deep-learning (DL) method for image reconstruction that is equipped with automated CSM calibration. Our deep network consists of three types of modules: data-consistency, regularization, and CSM calibration. Unlike traditional supervised DL methods, these modules are directly trained on undersampled and noisy k-space data rather than on fully sampled high-quality ground truth. We present empirical results on simulated data that show the potential of the proposed method for achieving better performance than several baseline methods. 
                        more » 
                        « less   
                    
                            
                            MRI RECONSTRUCTION VIA CASCADED CHANNEL-WISE ATTENTION NETWORK
                        
                    
    
            We consider an MRI reconstruction problem with input of k-space data at a very low undersampled rate. This can prac- tically benefit patient due to reduced time of MRI scan, but it is also challenging since quality of reconstruction may be compromised. Currently, deep learning based methods dom- inate MRI reconstruction over traditional approaches such as Compressed Sensing, but they rarely show satisfactory performance in the case of low undersampled k-space data. One explanation is that these methods treat channel-wise fea- tures equally, which results in degraded representation ability of the neural network. To solve this problem, we propose a new model called MRI Cascaded Channel-wise Attention Network (MICCAN), highlighted by three components: (i) a variant of U-net with Channel-wise Attention (UCA) mod- ule, (ii) a long skip connection and (iii) a combined loss. Our model is able to attend to salient information by filtering irrelevant features and also concentrate on high-frequency in- formation by enforcing low-frequency information bypassed to the final output. We conduct both quantitative evaluation and qualitative analysis of our method on a cardiac dataset. The experiment shows that our method achieves very promis- ing results in terms of three common metrics on the MRI reconstruction with low undersampled k-space data. Code is public available 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1747778
- PAR ID:
- 10105306
- Date Published:
- Journal Name:
- 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem. This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image. Multiple deep learning-based structures have been proposed for MRI reconstruction using CS, in both the k-space and image domains, and using unrolled optimization methods. However, the drawback of these structures is that they are not fully utilizing the information from both domains (k-space and image). Herein, we propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domains. We evaluate our method on a well-known open-source MRI dataset (652 brain cases and 1172 knee cases) and a clinical MRI dataset of 243 patients diagnosed with strokes from our institution to demonstrate the performance of our network. Our model achieves an overall peak signal-to-noise ratio/structural similarity of 40.92 ± 0.29/0.9577 ± 0.0025 (fourfold) and 37.03 ± 0.25/0.9365 ± 0.0029 (eightfold) for the brain dataset, 31.09 ± 0.25/0.6901 ± 0.0094 (fourfold) and 29.49 ± 0.22/0.6197 ± 0.0106 (eightfold) for the knee dataset, and 36.32 ± 0.16/0.9199 ± 0.0029 (20-fold) and 33.70 ± 0.15/0.8882 ± 0.0035 (30-fold) for the stroke dataset. In addition to quantitative evaluation, we undertook a blinded comparison of image quality across networks performed by a subspecialty trained radiologist. Overall, we demonstrate that our network achieves a superior performance among others under multiple reconstruction tasks.more » « less
- 
            Abstract PurposeTo introduce a novel deep model‐based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k‐space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. MethodsSPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high‐quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA‐based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self‐supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. ResultsWe validate SPICER on both open‐access datasets and experimentally collected data, showing that it can achieve state‐of‐the‐art performance in highly accelerated data acquisition settings (up to ). Our results also highlight the importance of different modules of SPICER—including the DMBA, the CSM estimation, and the SPICER training loss—on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre‐estimation methods especially when the ACS data is limited. ConclusionDespite being trained on noisy undersampled data, SPICER can reconstruct high‐quality images and CSMs in highly undersampled settings, which outperforms other self‐supervised learning methods and matches the performance of the well‐known E2E‐VarNet trained on fully sampled ground‐truth data.more » « less
- 
            Self‐supervised learning has shown great promise because of its ability to train deep learning (DL) magnetic resonance imaging (MRI) reconstruction methods without fully sampled data. Current self‐supervised learning methods for physics‐guided reconstruction networks split acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network, while the other is used to define the training loss. In this study, we propose an improved self‐supervised learning strategy that more efficiently uses the acquired data to train a physics‐guided reconstruction network without a database of fully sampled data. The proposed multi‐mask self‐supervised learning via data undersampling (SSDU) applies a holdout masking operation on the acquired measurements to split them into multiple pairs of disjoint sets for each training sample, while using one of these pairs for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi‐mask SSDU is applied on fully sampled 3D knee and prospectively undersampled 3D brain MRI datasets, for various acceleration rates and patterns, and compared with the parallel imaging method, CG‐SENSE, and single‐mask SSDU DL‐MRI, as well as supervised DL‐MRI when fully sampled data are available. The results on knee MRI show that the proposed multi‐mask SSDU outperforms SSDU and performs as well as supervised DL‐MRI. A clinical reader study further ranks the multi‐mask SSDU higher than supervised DL‐MRI in terms of signal‐to‐noise ratio and aliasing artifacts. Results on brain MRI show that multi‐mask SSDU achieves better reconstruction quality compared with SSDU. The reader study demonstrates that multi‐mask SSDU at R = 8 significantly improves reconstruction compared with single‐mask SSDU at R = 8, as well as CG‐SENSE at R = 2.more » « less
- 
            In this work, we study the deep image prior (DIP) for reconstruction problems in magnetic resonance imaging (MRI). DIP has become a popular approach for image reconstruction, where it recovers the clear image by fitting an overparameterized convolutional neural network (CNN) to the corrupted/undersampled measurements. To improve the performance of DIP, recent work shows that using a reference image as an input often leads to improved reconstruction results compared to vanilla DIP with random input. However, obtaining the reference input image often requires supervision and hence is difficult in practice. In this work, we propose a self-guided reconstruction scheme that uses no training data other than the set of undersampled measurements to simultaneously estimate the network weights and input (reference). We introduce a new regularization that aids the joint estimation by requiring the CNN to act as a powerful denoiser. The proposed self-guided method gives significantly improved image reconstructions for MRI with limited measurements compared to the conventional DIP and the reference-guided method while eliminating the need for any additional data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    