Nuclei segmentation is a fundamental task in histopathological image analysis. Typically, such segmentation tasks require significant effort to manually generate pixel-wise annotations for fully supervised training. To alleviate the manual effort, in this paper we propose a novel approach using points only annotation. Two types of coarse labels with complementary information are derived from the points annotation, and are then utilized to train a deep neural network. The fully- connected conditional random field loss is utilized to further refine the model without introducing extra computational complexity during inference. Experimental results on two nuclei segmentation datasets reveal that the proposed methodmore »
JOINT SEGMENTATION AND FINE-GRAINED CLASSIFICATION OF NUCLEI IN HISTOPATHOLOGY IMAGES
Nuclei segmentation and classification are two important tasks in the histopathology image analysis, because the mor- phological features of nuclei and spatial distributions of dif- ferent types of nuclei are highly related to cancer diagnosis and prognosis. Existing methods handle the two problems independently, which are not able to obtain the features and spatial heterogeneity of different types of nuclei at the same time. In this paper, we propose a novel deep learning based method which solves both tasks in a unified framework. It can segment individual nuclei and classify them into tumor, lymphocyte and stroma nuclei. Perceptual loss is utilized to enhance the segmentation of details. We also take advantages of transfer learning to promote the training of deep neural net- works on a relatively small lung cancer dataset. Experimental results prove the effectiveness of the proposed method. The code is publicly available
- Award ID(s):
- 1747778
- Publication Date:
- NSF-PAR ID:
- 10105310
- Journal Name:
- 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The success of supervised learning requires large-scale ground truth labels which are very expensive, time- consuming, or may need special skills to annotate. To address this issue, many self- or un-supervised methods are developed. Unlike most existing self-supervised methods to learn only 2D image features or only 3D point cloud features, this paper presents a novel and effective self-supervised learning approach to jointly learn both 2D image features and 3D point cloud features by exploiting cross-modality and cross-view correspondences without using any human annotated labels. Specifically, 2D image features of rendered images from different views are extracted by a 2Dmore »
-
Medical image segmentation is one of the most challenging tasks in medical image analysis and widely developed for many clinical applications. While deep learning-based approaches have achieved impressive performance in semantic segmentation, they are limited to pixel-wise settings with imbalanced-class data problems and weak boundary object segmentation in medical images. In this paper, we tackle those limitations by developing a new two-branch deep network architecture which takes both higher level features and lower level features into account. The first branch extracts higher level feature as region information by a common encoder-decoder network structure such as Unet and FCN, whereas themore »
-
Learning pose invariant representation is a fundamental problem in shape analysis. Most existing deep learning algorithms for 3D shape analysis are not robust to rotations and are often trained on synthetic datasets consisting of pre-aligned shapes, yielding poor generalization to unseen poses. This observation motivates a growing interest in rotation invariant and equivariant methods. The field of rotation equivariant deep learning is developing in recent years thanks to a well established theory of Lie group representations and convolutions. A fundamental problem in equivariant deep learning is to design activation functions which are both informative and preserve equivariance. The recently introducedmore »
-
This paper proposes to enable deep learning for generic machine learning tasks. Our goal is to allow deep learning to be applied to data which are already represented in instance feature tabular format for a better classification accuracy. Because deep learning relies on spatial/temporal correlation to learn new feature representation, our theme is to convert each instance of the original dataset into a synthetic matrix format to take the full advantage of the feature learning power of deep learning methods. To maximize the correlation of the matrix , we use 0/1 optimization to reorder features such that the ones withmore »