skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geometric and Magnetic Structures of K 2 ReI 6 as an Antiferromagnetic Insulator with Ferromagnetic Spin-Canting Originated from Spin−Orbit Coupling
Award ID(s):
1832967
PAR ID:
10105338
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
123
Issue:
3
ISSN:
1932-7447
Page Range / eLocation ID:
1645 to 1652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We apply the density-functional theory to study various phases (including non-magnetic (NM), anti-ferromagnetic (AFM), and ferromagnetic (FM)) in monolayer magnetic chromium triiodide (CrI 3 ), a recently fabricated 2D magnetic material. It is found that: (1) the introduction of magnetism in monolayer CrI 3 gives rise to metal-to-semiconductor transition; (2) the electronic band topologies as well as the nature of direct and indirect band gaps in either AFM or FM phases exhibit delicate dependence on the magnetic ordering and spin–orbit coupling; and (3) the phonon modes involving Cr atoms are particularly sensitive to the magnetic ordering, highlighting distinct spin–lattice and spin–phonon coupling in this magnet. First-principles simulations of the Raman spectra demonstrate that both frequencies and intensities of the Raman peaks strongly depend on the magnetic ordering. The polarization dependent A 1g modes at 77 cm −1 and 130 cm −1 along with the E g mode at about 50 cm −1 in the FM phase may offer a useful fingerprint to characterize this material. Our results not only provide a detailed guiding map for experimental characterization of CrI 3 , but also reveal how the evolution of magnetism can be tracked by its lattice dynamics and Raman response. 
    more » « less
  2. null (Ed.)