- Award ID(s):
- 1710468
- Publication Date:
- NSF-PAR ID:
- 10105356
- Journal Name:
- Materials Research Society symposia proceedings
- Page Range or eLocation-ID:
- EP08.08.02
- ISSN:
- 0272-9172
- Sponsoring Org:
- National Science Foundation
More Like this
-
To understand the mechanism underlying the fast, reversible, phase transformation, information about the atomic structure and defects structures in phase change materials class is key. PCMs are investigated for many applications. These devices are chalcogenide based and use self heating to quickly switch between amorphous and crystalline phases, generating orders of magnitude differences in the electrical resistivity. The main challenges with PCMs have been the large power required to heat above crystallization or melting (for melt-quench amorphization) temperatures and limited reliability due to factors such as resistance drifts of the metastable phases, void formation and elemental segregation upon cycling. Characterization of devices and their unique switching behavior result in distinct material properties affected by the atomic arrangement in the respective phase. TEM is used to study the atomic structure of the metastable crystalline phase. The aim is to correlate the microstructure with results from electrical characterization, building on R vs T measurements on various thicknesses GST thin films. To monitor phase changes in real-time as a function of temperature, thin films are deposited directly onto Protochips carriers. The Protochips heating holders provides controlled temperature changes while imaging in the TEM. These studies can provide insights into how changes occur inmore »
-
Phase-change memory (PCM) materials are being developed for faster, non-volatile & high-density memory that can facilitate more efficient computation as well as data storage. The materials used for these PCM devices are usually chalcogenides that can be switched between their amorphous and crystalline phases thus producing orders of magnitude difference in the electrical resistivity [1, 2]. The operation of such devices is limited by elemental segregation and void formation, which occurs as a result of the extensive cycling. After crystallization, the structure gradually transforms from fcc to hexagonal. In the present work, we are studying these different phase changes in-situ as they occur in PCM materials basically using TEM imaging. The aim is to correlate device modeling and electrical characterization in order to improve the models and enable accurate, predictive simulations. The thin film materials and devices can be directly deposited onto Protochips devices, allowing controlled temperature changes while imaging in the TEM. Although the temperature change rate achievable is too slow as compared to the fastest PCM-device operation, these rates can provides valuable insights into the various property changes in the material and phase transformations as well. Both a Cs-image corrected Titan ETEM and a Tecnai F30 have beenmore »
-
Biomimetic synaptic processes, which are imitated by functional memory devices in the computer industry, are a key focus of artificial intelligence (AI) research. It is critical to developing a memory technology that is compatible with Brain-Inspired Computing in order to eliminate the von Neumann bottleneck that restricts the efficiency of traditional computer designs. Due to restrictions such as high operation voltage, poor retention capacity, and high power consumption, silicon-based flash memory, which presently dominates the data storage devices market, is having difficulty meeting the requirements of future data storage device development. The developing resistive random-access memory (RRAM) has sparked intense investigation because of its simple two-terminal structure: two electrodes and a switching layer. RRAM has a resistive switching phenomenon which is a cycling behavior between the high resistance state and the low resistance state. This developing device type is projected to outperform traditional memory devices. Indium gallium zinc oxide (IGZO) has attracted great attention for the RRAM switching layer because of its high transparency and high atomic diffusion property of oxygen atoms. More importantly, by controlling the oxygen ratio in the sputter gas, its electrical properties can be easily tuned. The IGZO has been applied to the thin-film transistor (TFT),more »
-
The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability.more »
-
We propose a nanogap-enhanced phase-change waveguide with silicon PIN heaters. Thanks to the enhanced light-matter interaction in the nanogap, the proposed structure exhibits strong attenuation (Δ
α = ∼35 dB/µm) and optical phase (Δn eff = ∼1.2) modulation atλ =λ3 . By exploiting a directional coupler design, we present a 1 × 2 optical switch with an insertion loss of < 4 dB and a compact coupling length of ∼ 15 µm while maintaining small crosstalk less than −7.2 dB over an optical bandwidth of 50 nm. Thermal analysis shows that a 10 V pulse of 30 ns (1×1 modulator) and 55 ns (1×2 switch) in duration is required to raise the GST temperature of the phase-change waveguide above the melting temperature to induce the amorphization; however, the complete crystallization occurs by applying a 5 V pulse of 180 ns (1×1 modulator) and a 6 V pulse of 200 ns (1×2 switch),more »