The ever-growing data traffic requires greater transmission bandwidth and better energy efficiency in chip scale interconnects. The emerging transistor-laser-based electronic-photonic processing platform stands out for its high electrical-to-optical efficiency. Because transistor lasers operate best at 980 nm, efficient optical interconnects at this wavelength need to be developed for such energy-efficient computing platforms. Phase change materials (PCMs) are good candidates for achieving non-volatile, reconfigurable, zero-static power optical switching. Having bi-stable states under room temperature, a PCM has its permittivity significantly different between its crystalline and amorphous phases. The authors propose to develop a reconfigurable 1 x 2 optical switch by utilizing low loss GeTe PCM to pave the way for the transistor-laser platform at 980 nm. The non-volatility of the proposed device will open up opportunities for other interesting applications such as non-volatile optical memory and the optical equivalence of the field programmable gate array (FPGA).
more »
« less
Low-power quasi-continuous hybrid volatile/nonvolatile tuning of ring resonators
Programmable photonic integrated circuits are expected to play an increasingly important role in enabling high-bandwidth optical interconnects and large-scale in-memory computing as needed to support the rise of artificial intelligence and machine learning technology. To that end, chalcogenide-based non-volatile phase-change materials (PCMs) present a promising solution due to zero static power. However, high switching voltage and a small number of operating levels present serious roadblocks to the widespread adoption of PCM-programmable units. Here, we demonstrate an electrically programmable wide bandgap Sb2S3-clad silicon ring resonator using a silicon microheater at a complementary-metal–oxide–semiconductor compatible voltage of <3 V. Our device shows a low switching energy of 35.33 nJ (0.48 mJ) for amorphization (crystallization) and reversible phase transitions with high endurance (>2000 switching events) near 1550 nm. Combining a volatile thermo-optic effect with non-volatile PCMs, we demonstrate 7-bit (127 levels) operation with excellent repeatability and reduced power consumption. Our demonstration of low-voltage and low-energy operation, combined with the hybrid volatile–nonvolatile approach, marks a significant step toward integrating PCM-based programmable units in large-scale optical interconnects.
more »
« less
- Award ID(s):
- 2329089
- PAR ID:
- 10597925
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Photonics
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2378-0967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reconfigurability of photonic integrated circuits (PICs) has become increasingly important due to the growing demands for electronic–photonic systems on a chip driven by emerging applications, including neuromorphic computing, quantum information, and microwave photonics. Success in these fields usually requires highly scalable photonic switching units as essential building blocks. Current photonic switches, however, mainly rely on materials with weak, volatile thermo‐optic or electro‐optic modulation effects, resulting in large footprints and high energy consumption. As a promising alternative, chalcogenide phase‐change materials (PCMs) exhibit strong optical modulation in a static, self‐holding fashion, but the scalability of present PCM‐integrated photonic applications is still limited by the poor optical or electrical actuation approaches. Here, with phase transitions actuated by in situ silicon PIN diode heaters, scalable nonvolatile electrically reconfigurable photonic switches using PCM‐clad silicon waveguides and microring resonators are demonstrated. As a result, intrinsically compact and energy‐efficient switching units operated with low driving voltages, near‐zero additional loss, and reversible switching with high endurance are obtained in a complementary metal‐oxide‐semiconductor (CMOS)‐compatible process. This work can potentially enable very large‐scale CMOS‐integrated programmable electronic–photonic systems such as optical neural networks and general‐purpose integrated photonic processors.more » « less
-
Abstract Programmable photonic integrated circuits (PICs) consisting of reconfigurable on-chip optical components have been creating new paradigms in various applications, such as integrated spectroscopy, multi-purpose microwave photonics, and optical information processing. Among many reconfiguration mechanisms, non-volatile chalcogenide phase-change materials (PCMs) exhibit a promising approach to the future very-large-scale programmable PICs, thanks to their zero static power and large optical index modulation, leading to extremely low energy consumption and ultra-compact footprints. However, the scalability of the current PCM-based programmable PICs is still limited since they are not directly off-the-shelf in commercial photonic foundries now. Here, we demonstrate a scalable platform harnessing the mature and reliable 300 mm silicon photonic fab, assisted by an in-house wide-bandgap PCM (Sb2S3) integration process. We show various non-volatile programmable devices, including micro-ring resonators, Mach-Zehnder interferometers and asymmetric directional couplers, with low loss (~0.0044 dB/µm), large phase shift (~0.012 π/µm) and high endurance (>5000 switching events with little performance degradation). Moreover, we showcase this platform’s capability of handling relatively complex structures such as multiple PIN diode heaters in devices, each independently controlling an Sb2S3segment. By reliably setting the Sb2S3segments to fully amorphous or crystalline state, we achieved deterministic multilevel operation. An asymmetric directional coupler with two unequal-length Sb2S3segments showed the capability of four-level switching, beyond cross-and-bar binary states. We further showed unbalanced Mach-Zehnder interferometers with equal-length and unequal-length Sb2S3segments, exhibiting reversible switching and a maximum of 5 ($$N+1,N=4$$ ) and 8 ($${2}^{N},N=3$$ ) equally spaced operation levels, respectively. This work lays the foundation for future programmable very-large-scale PICs with deterministic programmability.more » « less
-
Programmable and reconfigurable optics hold significant potential for transforming a broad spectrum of applications, spanning space explorations to biomedical imaging, gas sensing, and optical cloaking. The ability to adjust the optical properties of components like filters, lenses, and beam steering devices could result in dramatic reductions in size, weight, and power consumption in future optoelectronic devices. Among the potential candidates for reconfigurable optics, chalcogenide‐based phase change materials (PCMs) offer great promise due to their non‐volatile and analogue switching characteristics. Although PCM have found widespread use in electronic data storage, these memory devices are deeply sub‐micron‐sized. To incorporate phase change materials into free‐space optical components, it is essential to scale them up to beyond several hundreds of microns while maintaining reliable switching characteristics. This study demonstrated a non‐mechanical, non‐volatile transmissive filter based on low‐loss PCMs with a 200 × 200 µm2switching area. The device/metafilter can be consistently switched between low‐ and high‐transmission states using electrical pulses with a switching contrast ratio of 5.5 dB. The device was reversibly switched for 1250 cycles before accelerated degradation took place. The work represents an important step toward realizing free‐space reconfigurable optics based on PCMs.more » « less
-
Abstract Scalable programmable photonic integrated circuits (PICs) can potentially transform the current state of classical and quantum optical information processing. However, traditional means of programming, including thermo-optic, free carrier dispersion, and Pockels effect result in either large device footprints or high static energy consumptions, significantly limiting their scalability. While chalcogenide-based non-volatile phase-change materials (PCMs) could mitigate these problems thanks to their strong index modulation and zero static power consumption, they often suffer from large absorptive loss, low cyclability, and lack of multilevel operation. Here, we report a wide-bandgap PCM antimony sulfide (Sb2S3)-clad silicon photonic platform simultaneously achieving low loss (<1.0 dB), high extinction ratio (>10 dB), high cyclability (>1600 switching events), and 5-bit operation. These Sb2S3-based devices are programmed via on-chip silicon PIN diode heaters within sub-ms timescale, with a programming energy density of$$\sim 10\,{fJ}/n{m}^{3}$$ . Remarkably, Sb2S3is programmed into fine intermediate states by applying multiple identical pulses, providing controllable multilevel operations. Through dynamic pulse control, we achieve 5-bit (32 levels) operations, rendering 0.50 ± 0.16 dB per step. Using this multilevel behavior, we further trim random phase error in a balanced Mach-Zehnder interferometer.more » « less
An official website of the United States government
