Abstract Heavy elements are synthesized by ther-process in neutron star mergers and potentially in rare supernovae linked to strong magnetic fields. Expensive hydrodynamic simulations of these extreme environments are usually postprocessed to calculate the nucleosynthesis. In contrast, here we follow a site-independent approach based on three key parameters: electron fraction, entropy, and expansion timescale. Our model reproduces the results based on hydrodynamic simulations. Moreover, the 120,000 astrophysical conditions analyzed allow us to systematically and generally explore the astrophysical conditions of ther-process, also beyond those found in current simulations. Our results show that a wide range of conditions produce very similar abundance patterns explaining the observed robustness of ther-process between the second and third peak. Furthermore, we cannot find a single condition that produces the full solarr-process pattern from first to third peak. Instead, a superposition of at least two or three conditions or components is required to reproduce the typicalr-process pattern as observed in the solar system and very old stars. The different final abundances are grouped into eight nucleosynthesis clusters, which can be used to select representative conditions for comparisons to observations and investigations of the nuclear physics input.
more »
« less
The R -Process Alliance: First Release from the Northern Search for r -process-enhanced Metal-poor Stars in the Galactic Halo
- PAR ID:
- 10105360
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 868
- Issue:
- 2
- ISSN:
- 1538-4357
- Page Range / eLocation ID:
- 110
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context.In recent years, theR-Process Alliance (RPA) has conducted a successful search for stars that are enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars that are strongly enriched in lightr-process elements, such as Sr, Y, and Zr. These so-called limited-rstars were investigated to explore the astrophysical production site(s) of these elements. Aims.We investigate the possible formation sites for light neutron-capture elements by deriving detailed abundances for neutron-capture elements from high-resolution spectra with a high signal-to-noise ratio of three limited-rstars. Methods.We conducted a kinematic analysis and a 1D local thermodynamic equilibrium spectroscopic abundance analysis of three stars. Furthermore, we calculated the lanthanide mass fraction (XLa) of our stars and of limited-rstars from the literature. Results.We found that the abundance pattern of neutron-capture elements of limited-rstars behaves differently depending on their [Ba/Eu] ratios, and we suggest that this should be taken into account in future investigations of their abundances. Furthermore, we found that theXLaof limited-rstars is lower than that of the kilonova AT2017gfo. The latter seems to be in the transition zone between limited-rXLaand that ofr-I andr-II stars. Finally, we found that unliker-I andr-II stars, the current sample of limited-rstars is largely born in the Galaxy and is not accreted.more » « less
-
Abstract We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process (r-process) based on our detailed cosmological zoom-in simulation of a Milky Way–like galaxy with anN-body/smoothed particle hydrodynamics code,asura. Most stars with no overabundance inr-process elements, as well as the stronglyr-process-enhanced (RPE)r-II stars ([Eu/Fe] > +0.7), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhancedr-I stars (+0.3 < [Eu/Fe] ≤ +0.7) are formed in the main in situ disk after 6 Gyr. Our results suggest that the fraction ofr-I andr-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhancedr-III stars ([Eu/Fe] > +2.0) are formed in accreted components. These results suggest that non-r-process-enhanced stars andr-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while ther-I stars tend to form in the well-mixed in situ disk. We compare our findings with high-resolution spectroscopic observations of RPE metal-poor stars in the halo and dwarf galaxies, including those collected by theR-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way’s accretion history.more » « less
An official website of the United States government

