skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: The R -Process Alliance: First Magellan/MIKE Release from the Southern Search for R -process-enhanced Stars
Award ID(s):
1716251 1815403
NSF-PAR ID:
10198209
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
898
Issue:
2
ISSN:
1538-4357
Page Range / eLocation ID:
150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context.In recent years, theR-Process Alliance (RPA) has conducted a successful search for stars that are enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars that are strongly enriched in lightr-process elements, such as Sr, Y, and Zr. These so-called limited-rstars were investigated to explore the astrophysical production site(s) of these elements.

    Aims.We investigate the possible formation sites for light neutron-capture elements by deriving detailed abundances for neutron-capture elements from high-resolution spectra with a high signal-to-noise ratio of three limited-rstars.

    Methods.We conducted a kinematic analysis and a 1D local thermodynamic equilibrium spectroscopic abundance analysis of three stars. Furthermore, we calculated the lanthanide mass fraction (XLa) of our stars and of limited-rstars from the literature.

    Results.We found that the abundance pattern of neutron-capture elements of limited-rstars behaves differently depending on their [Ba/Eu] ratios, and we suggest that this should be taken into account in future investigations of their abundances. Furthermore, we found that theXLaof limited-rstars is lower than that of the kilonova AT2017gfo. The latter seems to be in the transition zone between limited-rXLaand that ofr-I andr-II stars. Finally, we found that unliker-I andr-II stars, the current sample of limited-rstars is largely born in the Galaxy and is not accreted.

     
    more » « less