skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributions of extremal black holes in Calabi-Yau compactifications
A bstract We study non-supersymmetric extremal black hole excitations of 4d $$ \mathcal{N} $$ N = 2 supersymmetric string vacua arising from compactification on Calabi-Yau threefolds. The values of the (vector multiplet) moduli at the black hole horizon are governed by the attractor mechanism. This raises natural questions, such as “what is the distribution of attractor points on moduli space?” and “how many attractor black holes are there with horizon area up to a certain size?” We employ tools developed by Denef and Douglas [1] to answer these questions.  more » « less
Award ID(s):
1720397
PAR ID:
10105463
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We argue that supersymmetric BPS states can act as efficient finite energy probes of the moduli space geometry thanks to the attractor mechanism. We focus on 4d $$ \mathcal{N} $$ N = 2 compactifications and capture aspects of the effective field theory near the attractor values in terms of physical quantities far away in moduli space. Furthermore, we illustrate how the standard distance in moduli space can be related asymptotically to the black hole mass. We also compute a measure of the resolution with which BPS black holes of a given mass can distinguish far away points in the moduli space. The black hole probes may lead to a deeper understanding of the Swampland constraints on the geometry of the moduli space. 
    more » « less
  2. Abstract A new solution of four-dimensional vacuum General Relativity is presented. It describes the near horizon region of the extreme (maximally spinning) binary black hole system with two identical extreme Kerr black holes held in equilibrium by a massless strut. This is the first example of a non-supersymmetric, near horizon extreme binary black hole geometry of two uncharged black holes. The black holes are co-rotating, their relative distance is fixed, and the solution is uniquely specified by the mass. Asymptotically, the geometry corresponds to the near horizon extreme Kerr (NHEK) black hole. The binary extreme system has finite entropy. 
    more » « less
  3. null (Ed.)
    A bstract The gravitational dual to the grand canonical ensemble of a large N holographic theory is a charged black hole. These spacetimes — for example Reissner- Nordström-AdS — can have Cauchy horizons that render the classical gravitational dynamics of the black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit. 
    more » « less
  4. A bstract We construct a family of non-supersymmetric extremal black holes and their horizonless microstate geometries in four dimensions. The black holes can have finite angular momentum and an arbitrary charge-to-mass ratio, unlike their supersymmetric cousins. These features make them and their microstate geometries astrophysically relevant. Thus, they provide interesting prototypes to study deviations from Kerr solutions caused by new horizon-scale physics. In this paper, we compute the gravitational multipole structure of these solutions and compare them to Kerr black holes. The multipoles of the black hole differ significantly from Kerr as they depend non-trivially on the charge-to-mass ratio. The horizonless microstate geometries (that are comparable in size to a black hole) have a similar multipole structure as their corresponding black hole, with deviations to the black hole multipole values set by the scale of their microstructure. 
    more » « less
  5. A<sc>bstract</sc> It has long been conjectured that the largeNdeconfinement phase transition of$$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills corresponds via AdS/CFT to the Hawking-Page transition in which black holes dominate the thermal ensemble, and quantitative evidence of this has come through the recent matching of the superconformal index of$$ \frac{1}{16} $$ 1 16 -BPS states to the supersymmetric black hole entropy. We introduce the half-BPS Gukov-Witten surface defect as a probe of the superconformal index, which also serves as an order parameter for the deconfinement transition. This can be studied directly in field theory as a modification of the usual unitary matrix model or in the dual description as a D3-brane probe in the background of a (complex) supersymmetric black hole. Using a saddle point approximation, we determine our defect index in the largeNlimit as a simple function of the chemical potentials and show independently that it is reproduced by the renormalized action of the brane in the black hole background. Along the way, we also comment on the Cardy limit and the thermodynamics of the D3-brane in the generalized ensemble. The defect index sharply distinguishes between the confining and the deconfining phases of the gauge theory and thus is a supersymmetric non-perturbative order parameter for these largeNphase transitions which deserves further investigation. Finally, our work provides an example where the properties of a black hole coupled to an external system can be analyzed precisely. 
    more » « less