skip to main content


Title: Gravitational duals to the grand canonical ensemble abhor Cauchy horizons
A bstract The gravitational dual to the grand canonical ensemble of a large N holographic theory is a charged black hole. These spacetimes — for example Reissner- Nordström-AdS — can have Cauchy horizons that render the classical gravitational dynamics of the black hole interior incomplete. We show that a (spatially uniform) deformation of the CFT by a neutral scalar operator generically leads to a black hole with no inner horizon. There is instead a spacelike Kasner singularity in the interior. For relevant deformations, Cauchy horizons never form. For certain irrelevant deformations, Cauchy horizons can exist at one specific temperature. We show that the scalar field triggers a rapid collapse of the Einstein-Rosen bridge at the would-be Cauchy horizon. Finally, we make some observations on the interior of charged dilatonic black holes where the Kasner exponent at the singularity exhibits an attractor mechanism in the low temperature limit.  more » « less
Award ID(s):
1801805
NSF-PAR ID:
10287904
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2020
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract We study the interior of a recently constructed family of asymptotically flat, charged black holes that develop (charged) scalar hair as one increases their charge at fixed mass. Inside the horizon, these black holes resemble the interior of a holographic superconductor. There are analogs of the Josephson oscillations of the scalar field, and the final Kasner singularity depends very sensitively on the black hole parameters near the onset of the instability. In an appendix, we give a general argument that Cauchy horizons cannot exist in a large class of stationary black holes with scalar hair. 
    more » « less
  2. null (Ed.)
    Charged black holes in anti-de Sitter space become unstable to forming charged scalar hair at low temperatures T < Tc. This phenomenon is a holographic realization of superconductivity. We look inside the horizon of these holographic superconductors and find intricate dynamical behavior. The spacetime ends at a spacelike Kasner singularity, and there is no Cauchy horizon. Before reaching the singularity, there are several intermediate regimes which we study both analytically and numerically. These include strong Josephson oscillations in the condensate and possible 'Kasner inversions' in which after many e-folds of expansion, the Einstein-Rosen bridge contracts towards the singularity. Due to the Josephson oscillations, the number of Kasner inversions depends very sensitively on T, and diverges at a discrete set of temperatures {Tn} that accumulate at Tc. Near these Tn, the final Kasner exponent exhibits fractal-like behavior. 
    more » « less
  3. Abstract

    In classical general relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner–Nordström or Reissner–Nordström–deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the ‘Cauchy horizon.’ It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a ‘final singularity,’ and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter,V, along a radial null geodesic transverse to the Cauchy horizon asTVVC/V2withCindependent of the state andC≠ 0 generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a singularity through which the spacetime cannot be extended as a (weak) solution of the semiclassical Einstein equation. This behavior is expected to be quite general, although it is possible to haveC= 0 in certain special cases, such as the BTZ black hole.

     
    more » « less
  4. A bstract Two-dimensional Schwarzschild-de Sitter is a convenient spacetime in which to study the effects of horizons on quantum fields since the spacetime contains two horizons, and the wave equation for a massless minimally coupled scalar field can be solved exactly. The two-point correlation function of a massless scalar is computed in the Unruh state. It is found that the field correlations grow linearly in terms of a particular time coordinate that is good in the future development of the past horizons, and that the rate of growth is equal to the sum of the black hole plus cosmological surface gravities. This time dependence results from additive contributions of each horizon component of the past Cauchy surface that is used to define the state. The state becomes the Bunch-Davies vacuum in the cosmological far field limit. The two point function for the field velocities is also analyzed and a peak is found when one point is between the black hole and cosmological horizons and one point is outside the future cosmological horizon. 
    more » « less
  5. A bstract We investigate the geometry near the horizon of a generic, four-dimensional extremal black hole. When the cosmological constant is negative, we show that (in almost all cases) tidal forces diverge as one crosses the horizon, and this singularity is stronger for larger black holes. In particular, this applies to generic nonspherical black holes, such as those satisfying inhomogeneous boundary conditions. Nevertheless, all scalar curvature invariants remain finite. Moreover, we show that nonextremal black holes have tidal forces that diverge in the extremal limit. Holographically, this singularity is reflected in anomalous scaling of the specific heat with temperature. Similar (albeit weaker) effects are present when the cosmological constant is positive, but not when it vanishes. 
    more » « less