skip to main content


Title: Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors
Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.  more » « less
Award ID(s):
1753380
NSF-PAR ID:
10105750
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
34
ISSN:
0027-8424
Page Range / eLocation ID:
8511 to 8516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi2Te4is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern numberC = 1 appears as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of theC = 1 state in the cAFM phase to theC = 2 orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the dissipationless chiral edge transport can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices.

     
    more » « less
  2. Abstract

    One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, thez-axis) with frequencyω0due to absorption of low-power microwaves of frequencyω0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that componentISzof spin current vector(ISx(t),ISy(t),ISz)ω0is time-independent whileISx(t)andISy(t)oscillate harmonically in time with a single frequencyω0whereas pumped charge current is zeroI0in the same adiabaticω0limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spinISα(t)and chargeI(t) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiplesNω0of the driving frequencyω0. The cutoff order of such high harmonics increases with SOC strength, reachingNmax11in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoffNmax25can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.

     
    more » « less
  3. null (Ed.)
    Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh. This damping enhancement in FeRh is sensitive to its fraction of antiferromagnetic and ferromagnetic phases, which can be dynamically tuned by electric fields through a strain-mediated magnetoelectric coupling. In a heterostructure of FeRh and piezoelectric PMN-PT, we demonstrated a more than 120% modulation of the effective damping by electric fields during the antiferromagnetic-to-ferromagnetic phase transition. Our results demonstrate an efficient approach to controlling the magnetization dynamics, thus enabling low-power tunable electronics. 
    more » « less
  4. Abstract

    The Event Horizon Telescope (EHT) recently released the first linearly polarized images of the accretion flow around the supermassive black hole Messier 87*, hereafter M87*. The spiraling polarization pattern found in the EHT images favored magnetically arrested disks as the explanation for the EHT image. With next-generation improvements to very long baseline interferometry on the horizon, understanding similar polarized features in the highly lensed structure known as the “photon ring,” where photons make multiple half orbits about the black hole before reaching the observer, will be critical to the analysis of future images. Recent work has indicated that this image region may be depolarized relative to more direct emission. We expand this observation by decomposing photon half orbits in the EHT library of simulated images of the M 87* accretion system and find that images of magnetically arrested disk simulations show a relative depolarization of the photon ring attributable to destructive interference of oppositely spiraling electric field vectors; this antisymmetry, which arises purely from strong gravitational lensing, can produce up to ∼50% depolarization in the photon ring region with respect to the direct image. In systems that are not magnetically arrested and with the exception of systems with high spin and ions and electrons of equal temperature, we find that highly lensed indirect subimages are almost completely depolarized, causing a modest depolarization of the photon ring region in the complete image. We predict that next-generation EHT observations of M 87* polarization should jointly constrain the black hole spin and the underlying emission and magnetic field geometry.

     
    more » « less
  5.  
    more » « less