In this work, we report a papertronic sensing system with the ability to achieve easy, rapid, and sensitive characterization of bacterial electrogenicity from a single drop of culture. Paper was used as a device substrate that inherently produces favorable conditions for easy, rapid, and sensitive and potentially high-throughput controlling of a microbial liquid sample. Through an innovative microscale device structure and a simple transistor amplifier circuit directly integrated into a single sheet of paper substrate, a powerful sensing array was constructed, resulting in the rapid and sensitive characterization of bacterial electrogenicity from a microliter sample volume. The microbial current generations were amplified by the transistor providing power to a 4-wide LED circuit board indicator bar for the direct visual readout with the naked eyes. Depending on bacterial electrogenicity, the LED intensity was changed. We validated the effectiveness of the sensor using two known bacterial electrogens (wild-type S. oneidensis and P. aeruginosa) and hypothesis-driven genetically modified P. aeruginosa mutant strains. 
                        more » 
                        « less   
                    
                            
                            A Fully-Papertronic Biosensing Array for High-Throughput Characterization of Microbial Electrogenicity
                        
                    
    
            For the first time, we report a low-cost, disposable fully-papertronic screening platform for rapid screening and identification of electroactive microorganisms. This novel papertronic device is capable of simultaneous characterizing the electrogenicity of 10’s of the newly discovered, genetically engineered, bacteria. This work explored an exciting range of possibilities with the goal of fusing microbial fuel cell technology with ‘papertronics,’ the emerging field of paper-based electronics. Spatially distinct 64 sensing units of the array were constructed by patterning hydrophilic anodic reservoirs in paper with hydrophobic wax boundaries and utilizing 3-D multi-laminate paper structures. Full integration of a high-performance microbial sensor on paper can be achieved by improving the microbial electron exchange with the electrodes in an engineered conductive paper reservoir and reducing cathodic overpotential by using a solid electron acceptor on paper. Furthermore, the intrinsic capillary force of the paper and the increased capacity from the engineered reservoir allowed for rapid adsorption of the bacterial sample and promote immediate microbial cell attachment to the electrode, leading to instant power generation with even a small amount of the liquid. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1703394
- PAR ID:
- 10106010
- Date Published:
- Journal Name:
- Conf Proc IEEE Eng Med Biol Soc. 2018
- Page Range / eLocation ID:
- 6076 to 6079
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Transient electronics, which can operate only for short‐lived applications and then be eco‐friendly disintegrated, create opportunities in environmental sensing, healthcare, and hardware security. Paper‐based electronics, or papertronics, recently have rapidly advanced the physically transient device platform because paper as a foundation offers an environmentally sustainable and cost‐effective option for those increasingly pervasive and fast‐updated single‐use applications. Paper‐based power supplies are indispensable to realize a fully papertronic paradigm and are a critical enabler of environmentally benign power solutions. Microbial fuel cells (MFCs) hold great potential as power sources for such green papertronic applications. This work reports the design, operation, and optimization of a high‐power papertronic MFC by biosynthesizing microbe‐mediated tin oxide nanoparticles (SnO2NPs) on dormant Bacillus subtilis endospores. They form an electrical conduit that improves electron harvesting during the spore germination and power generation. The MFC is packaged in a sub‐microporous alginate to minimize the potential risk of bacteria leakage. Upon the introduction of water, the paper‐based MFC generates a significantly enhanced power density of 140 µW cm−2, which is more than two orders of magnitude greater than their previously reported counterparts. Six MFCs connected in series generate more than sufficient power to run an on‐chip, light‐emitting diode.more » « less
- 
            We create a simple, rapid, equipment-free papertronic sensor array that is connected to a visual readout, allowing the naked eye to access antibiotic effectiveness against pathogenic bacteria, Pseudomonas aeruginosa PA01. The sensing approach quickly monitors microbial bioelectricity which is based on their metabolic activities and is inversely proportional to the concentration of antibiotics. Each sensing system consists of a two-electrode microbial sensing unit, an interface circuit for sensor signal amplification, and an electronic visual display with a light-emitting diode (LED), which are all mounted onto a paper-based printed circuit board. The bioelectricity in the sensing unit is amplified by the transistor and is transduced into LED illumination when a pre-defined electric current corresponding to a bacterial sample with a certain antibiotic concentration is obtained. Only within an hour, the system generates reliable, discrete visual responses to monitor antibiotic efficacy and provides the right doses for treatment against bacterial infections.more » « less
- 
            Abstract Lectins are important biological tools for binding glycans, but recombinant protein expression poses challenges for some lectin classes, limiting the pace of discovery and characterization. To discover and engineer lectins with new functions, workflows amenable to rapid expression and subsequent characterization are needed. Here, we present bacterial cell-free expression as a means for efficient, small-scale expression of multivalent, disulfide bond-rich, rhamnose-binding lectins. Furthermore, we demonstrate that the cell-free expressed lectins can be directly coupled with bio-layer interferometry analysis, either in solution or immobilized on the sensor, to measure interaction with carbohydrate ligands without purification. This workflow enables the determination of lectin substrate specificity and estimation of binding affinity. Overall, we believe that this method will enable high-throughput expression, screening, and characterization of new and engineered multivalent lectins for applications in synthetic glycobiology.more » « less
- 
            Abstract Bacteriophages constitute an invaluable biological reservoir for biotechnology and medicine. The ability to exploit such vast resources is hampered by the lack of methods to rapidly engineer, assemble, package genomes, and select phages. Cell-free transcription-translation (TXTL) offers experimental settings to address such a limitation. Here, we describe PHage Engineering by In vitro Gene Expression and Selection (PHEIGES) using T7 phage genome and Escherichia coli TXTL. Phage genomes are assembled in vitro from PCR-amplified fragments and directly expressed in batch TXTL reactions to produce up to 1011PFU/ml engineered phages within one day. We further demonstrate a significant genotype-phenotype linkage of phage assembly in bulk TXTL. This enables rapid selection of phages with altered rough lipopolysaccharides specificity from phage genomes incorporating tail fiber mutant libraries. We establish the scalability of PHEIGES by one pot assembly of such mutants with fluorescent gene integration and 10% length-reduced genome.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    