skip to main content


Title: Characterization of Platinum Nanoparticles Utilized in Photocatalytic Hydrogen Synthesis*
Hydrogen (H2) gas is a possible alternate fuel to help meet increasing worldwide energy needs, but a major obstacle in the use of H2 for green, environmentally-friendly fuel is the energetic and chemical requirements to synthesize the gas. We are studying the use of photocatalytic reactions to produce H2, where a light-absorbing substance acts as a catalyst in shuttling electrons from a donor to protons that are reduced into H2. Previous research conducted at BYU showed that platinum nanoparticles bound to ferritin catalyzed the photoreaction of methyl viologen to reduce protons in an organic acid offered an increase in hydrogen production efficiency by up to 100 times over platinum black (a commonly available platinum-based catalyst). We are reporting on our efforts to optimize the synthesis of the platinum nanoparticles bound to ferritin that are used in this photocatalytic system and how we characterize these nanoparticles, as well as how these characteristics affect H2 production. *We'd like to thank the Brigham Young University Physics Department and the National Science Foundation (grant no. 1757998) for their generous funding.  more » « less
Award ID(s):
1757998
NSF-PAR ID:
10106063
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bulletin of the American Physical Society
Volume:
64
Issue:
2
ISSN:
0003-0503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As energy needs grow ever greater in today's world, many scientists are investigating possible replacements for fossil fuels as an energy source. The use of hydrogen (H2) gas in particular is undergoing a significant amount of research, but a major obstacle in the use of H2 for green, environmentally-friendly fuel is the energetic and chemical requirement to synthesize the gas. A possibility in satisfying current and future H2 production needs is the use of photocatalytic reactions, where a light-absorbing substance acts as a catalyst in shuttling electrons from a donor to protons that are reduced into H2. Previous research conducted at BYU found such a system where platinum nanoparticles bound to ferritin catalyzed the photoreaction of methyl viologen to reduce protons in an organic acid, which offered a one hundred-fold increase in H2 production efficiency over photocatalytic reactions catalyzed by bulk platinum. We are reporting on our efforts to optimize the synthesis of the platinum nanoparticles bound to ferritin that are used in this photocatalytic system and how we characterize these nanoparticles. *We'd like to thank the Brigham Young University Physics Department and the National Science Foundation (grant no. 1757998) for their generous funding. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.4CS.J03.3 
    more » « less
  2. The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water. 
    more » « less
  3. Abstract

    Facile fabrication of advanced catalysts toward oxygen reduction reaction with improving activity and stability is significant for proton‐exchange membrane fuel cells. Based on a generic solid‐state reaction, this study reports a modified hydrogen‐assisted, gas‐phase synthesis for facile, scalable production of surfactant‐free, thin, platinum‐based nanowire‐network electrocatalysts. The free‐standing platinum and platinum–nickel alloy nanowires show improvements of up to 5.1 times and 10.9 times for mass activity with a minimum 2.6% loss after an accelerated durability test for 10k cycles; 8.5 times and 13.8 times for specific activity, respectively, compared to commercial Pt/C catalyst. In addition, combined with a wet impregnation method, different substrate‐materials‐supported platinum‐based nanowires are obtained, which paves the way to practical application as a next‐generation supported catalyst to replace Pt/C. The growth stages and formation mechanism are investigated by an in situ transmission electron microscopy study. It reveals that the free‐standing platinum nanowires form in the solid state via metal‐surface‐diffusion‐assisted oriented attachment of individual nanoparticles, and the interaction with gas molecules plays a critical role, which may represent a gas‐molecular‐adsorbate‐modified growth in catalyst preparation.

     
    more » « less
  4. For the conversion of CO 2 into fuels and chemical feedstocks, hybrid gas/liquid-fed electrochemical flow reactors provide advantages in selectivity and production rates over traditional liquid phase reactors. However, fundamental questions remain about how to optimize conditions to produce desired products. Using an alkaline electrolyte to suppress hydrogen formation and a gas diffusion electrode catalyst composed of copper nanoparticles on carbon nanospikes, we investigate how hydrocarbon product selectivity in the CO 2 reduction reaction in hybrid reactors depends on three experimentally controllable parameters: (1) supply of dry or humidified CO 2 gas, (2) applied potential, and (3) electrolyte temperature. Changing from dry to humidified CO 2 dramatically alters product selectivity from C 2 products ethanol and acetic acid to ethylene and C 1 products formic acid and methane. Water vapor evidently influences product selectivity of reactions that occur on the gas-facing side of the catalyst by adding a source of protons that alters reaction pathways and intermediates. 
    more » « less
  5. Catalytic hydrogenation of aromatic compounds is an important industrial process, particularly for the production of many petrochemical and pharmaceutical derivatives. This reaction is mainly catalyzed by noble metals, but rarely by metal oxides. Here, we report the development of monoclinic hydrogen-bearing ruthenium dioxide with a nominal composition of H x RuO 2 that can serve as a standalone catalyst for various hydrogenation reactions. The hydrogen-bearing oxide was synthesized through the water gas shift reaction of CO and H 2 O in the presence of rutile RuO 2 . The structure of H x RuO 2 was determined by synchrotron X-ray diffraction and density functional theory (DFT) studies. Solid-state 1 H NMR and Raman studies suggest that this compound possesses two types of isolated interstitial protons. H x RuO 2 is very active in hydrogenation of various arenes, including liquid organic hydrogen carriers, which are completely converted to the corresponding fully hydrogenated products under relatively mild conditions. In addition, high selectivities (>99%) were observed for the catalytic hydrogenation of functionalized nitroarenes to corresponding anilines. DFT simulations yield a small barrier for concerted proton transfer. The facile proton dynamics may be key in enabling selective hydrogenation reactions at relatively low temperature. Our findings inspire the search for hydrogen-containing metal oxides that could be employed as high-performance materials for catalysts, electrocatalysts, and fuel cells. 
    more » « less