As energy needs grow ever greater in today's world, many scientists are investigating possible replacements for fossil fuels as an energy source. The use of hydrogen (H2) gas in particular is undergoing a significant amount of research, but a major obstacle in the use of H2 for green, environmentally-friendly fuel is the energetic and chemical requirement to synthesize the gas. A possibility in satisfying current and future H2 production needs is the use of photocatalytic reactions, where a light-absorbing substance acts as a catalyst in shuttling electrons from a donor to protons that are reduced into H2. Previous research conducted at BYU found such a system where platinum nanoparticles bound to ferritin catalyzed the photoreaction of methyl viologen to reduce protons in an organic acid, which offered a one hundred-fold increase in H2 production efficiency over photocatalytic reactions catalyzed by bulk platinum. We are reporting on our efforts to optimize the synthesis of the platinum nanoparticles bound to ferritin that are used in this photocatalytic system and how we characterize these nanoparticles. *We'd like to thank the Brigham Young University Physics Department and the National Science Foundation (grant no. 1757998) for their generous funding. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2018.4CS.J03.3
more »
« less
Characterization of Platinum Nanoparticles Utilized in Photocatalytic Hydrogen Synthesis*
Hydrogen (H2) gas is a possible alternate fuel to help meet increasing worldwide energy needs, but a major obstacle in the use of H2 for green, environmentally-friendly fuel is the energetic and chemical requirements to synthesize the gas. We are studying the use of photocatalytic reactions to produce H2, where a light-absorbing substance acts as a catalyst in shuttling electrons from a donor to protons that are reduced into H2. Previous research conducted at BYU showed that platinum nanoparticles bound to ferritin catalyzed the photoreaction of methyl viologen to reduce protons in an organic acid offered an increase in hydrogen production efficiency by up to 100 times over platinum black (a commonly available platinum-based catalyst). We are reporting on our efforts to optimize the synthesis of the platinum nanoparticles bound to ferritin that are used in this photocatalytic system and how we characterize these nanoparticles, as well as how these characteristics affect H2 production. *We'd like to thank the Brigham Young University Physics Department and the National Science Foundation (grant no. 1757998) for their generous funding.
more »
« less
- Award ID(s):
- 1757998
- PAR ID:
- 10106063
- Date Published:
- Journal Name:
- Bulletin of the American Physical Society
- Volume:
- 64
- Issue:
- 2
- ISSN:
- 0003-0503
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The photocatalytic hydrogen evolution reaction (HER) by water splitting has been studied, using catalysts based on crystalline TiO2 nanowires (TiO2NWs), which were synthesized by a hydrothermal procedure. This nanomaterial was subsequently modified by incorporating different loadings (1%, 3% and 5%) of gold nanoparticles (AuNPs) on the surface, previously exfoliated MoS2 nanosheets, and CeO2 nanoparticles (CeO2NPs). These nanomaterials, as well as the different synthesized catalysts, were characterized by electron microscopy (HR-SEM and HR-TEM), XPS, XRD, Raman, Reflectance and BET surface area. HER studies were performed in aqueous solution, under irradiation at different wavelengths (UV-visible), which were selected through the appropriate use of optical filters. The results obtained show that there is a synergistic effect between the different nanomaterials of the catalysts. The specific area of the catalyst, and especially the increased loading of MoS2 and CeO2NPs in the catalyst substantially improved the H2 production, with values of ca. 1114 μm/hg for the catalyst that had the best efficiency. Recyclability studies showed only a decrease in activity of approx. 7% after 15 cycles of use, possibly due to partial leaching of gold nanoparticles during catalyst use cycles. The results obtained in this research are certainly relevant and open many possibilities regarding the potential use and scaling of these heterostructures in the photocatalytic production of H2 from water.more » « less
-
For the conversion of CO 2 into fuels and chemical feedstocks, hybrid gas/liquid-fed electrochemical flow reactors provide advantages in selectivity and production rates over traditional liquid phase reactors. However, fundamental questions remain about how to optimize conditions to produce desired products. Using an alkaline electrolyte to suppress hydrogen formation and a gas diffusion electrode catalyst composed of copper nanoparticles on carbon nanospikes, we investigate how hydrocarbon product selectivity in the CO 2 reduction reaction in hybrid reactors depends on three experimentally controllable parameters: (1) supply of dry or humidified CO 2 gas, (2) applied potential, and (3) electrolyte temperature. Changing from dry to humidified CO 2 dramatically alters product selectivity from C 2 products ethanol and acetic acid to ethylene and C 1 products formic acid and methane. Water vapor evidently influences product selectivity of reactions that occur on the gas-facing side of the catalyst by adding a source of protons that alters reaction pathways and intermediates.more » « less
-
Eyvaz, M; Yüksel, E (Ed.)The conversion of solar energy into chemical fuel is one of the “Holy Grails” of 21st century chemistry. Solar energy can be used to split water into oxygen and protons, which are then used to make hydrogen fuel. Nature is able to catalyze both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) required for the conversion of solar energy into chemical fuel through the employment of enzymes that are composed of inexpensive transition metals Instead of using expensive catalysts such as platinum, cheaper alternatives (such as cobalt, iron, or nickel) would provide the opportunity to make solar energy competitive with fossil fuels. However, obtaining efficient catalysts based on earth abundant materials is still a daunting task. Progress in finding an ideal catalyst for the OER has been challenging as it appears that the overpotential for these catalysts have plateaued. Recent theory has shown that nanoscopic confinement of catalysts into 3D frameworks increases stability and efficiency of catalysts for OER. We are studying the use of the layered inorganic nanomaterial zirconium phosphate (ZrP) for water splitting. In this chapter we review the advancements made with ZrP as a support for transition metals for the OER. Our studies have found that ZrP is a suitable support for transition metals as it provides an accessible surface where the OER can occur. Further findings have also show that exfoliation of ZrP increases the availability of sites where active species can be adsorbed and performance is improved with this strategy.more » « less
-
null (Ed.)Understanding and controlling factors that restrict the rates of fuel-forming reactions are essential to designing effective catalyst-modified semiconductors for applications in solar-to-fuel technologies. Herein, we describe GaAs semiconductors featuring a polymeric coating that contains cobaloxime-type catalysts for photoelectrochemically powering hydrogen production. The activities of these electrodes (limiting current densities >20 mA cm–2 under 1-sun illumination) enable identification of fundamental performance-limiting bottlenecks encountered at relatively high rates of fuel formation. Experiments conducted under varying bias potential, pH, illumination intensity, and scan rate reveal two distinct mechanisms of photoelectrochemical hydrogen production. At relatively low polarization and pH, the limiting photoactivity is independent of illumination conditions and is attributed to a mechanism involving reduction of substrate protons. At relatively high polarization or pH, the limiting photoactivity shows a linear response to increasing photon flux and is attributed to a mechanism involving reduction of substrate water. This work illustrates the complex interplay between transport of photons, electrons, and chemical substrates in photoelectrosynthetic reactions and highlights diagnostic tools for better understanding these processes.more » « less
An official website of the United States government

