Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Aside from band gap reduction, little is understood about the effect of the tin‐for‐lead substitution on the fundamental optical and optoelectronic properties of metal halide perovskites (MHPs), especially when transitioning from 3D to lower dimensional structures. Herein, we take advantage of the spectroscopic isolation of excitons in 2D MHPs to study the intrinsic differences between lead and tin MHPs. The exciton's spectral fine structure indicates a larger polaron binding energy in tin MHPs. Additionally, the electroabsorption responses of the 2D MHPs demonstrates that tin MHPs have exciton binding energies 1.5–2× lower than that of their lead counterparts. Despite the lower binding energy, the excitons in tin MHPs are more Frenkel‐like with small radii, small polarizabilities, and large dipole moments. These results are interpreted as consequences of small polaron formation and disorder‐induced dipole moments. This work highlights the wide range of intrinsic differences between lead and tin MHPs as well as the complexity of excited states in these systems.more » « less
- 
            While seabed characterization methods have often focused on estimating individual sediment parameters, deep learning suggests a class-based approach focusing on the overall acoustic effect. A deep learning classifier—trained on 1D synthetic waveforms from underwater explosive sources—can distinguish 13 seabed classes. These classes are distinct according to a proposed metric of acoustic similarity. When tested on seabeds not used in training, the classifier obtains 96% accuracy for matching such a seabed to one of the top-3 most acoustically similar classes from the 13 training seabeds. This approach quantifies the performance of a seabed classifier in the face of real seabed variability.more » « less
- 
            Non-invasive temperature probes have use in many settings where conventional thermometers may not be suitable or as efficient. An optical temperature probe is a material whose optical properties, such as photoluminescence (PL) or PL lifetime, are known as a function of temperature. We present results of PL lifetime studies of the organic dye Rhodamine B, which is a good candidate for use in temperature probes due to its large PL emission. We have measured PL lifetimes using time correlated single photon counting (TCSPC). The lifetimes were measured from temperatures of 15 K to 330 K. The lifetimes appear to be non-monotonic: they increase with temperature to a point, then decrease again. It is uncertain what is causing this unexpected trend, and we are in the process of verifying these lifetime measurements as well as studying other possible luminescent materials such as semiconductor quantum dots for application as temperature probes. *Research was performed at BYU as part of the NSF REU program, grant no. 1757998.more » « less
- 
            Hydrogen (H2) gas is a possible alternate fuel to help meet increasing worldwide energy needs, but a major obstacle in the use of H2 for green, environmentally-friendly fuel is the energetic and chemical requirements to synthesize the gas. We are studying the use of photocatalytic reactions to produce H2, where a light-absorbing substance acts as a catalyst in shuttling electrons from a donor to protons that are reduced into H2. Previous research conducted at BYU showed that platinum nanoparticles bound to ferritin catalyzed the photoreaction of methyl viologen to reduce protons in an organic acid offered an increase in hydrogen production efficiency by up to 100 times over platinum black (a commonly available platinum-based catalyst). We are reporting on our efforts to optimize the synthesis of the platinum nanoparticles bound to ferritin that are used in this photocatalytic system and how we characterize these nanoparticles, as well as how these characteristics affect H2 production. *We'd like to thank the Brigham Young University Physics Department and the National Science Foundation (grant no. 1757998) for their generous funding.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available