skip to main content

Title: Input- Reflectionless Acoustic-Wave-Lumped- Element Resonator-Based Bandpass Filters
This paper reports on an RF design methodology for acoustic-wave-resonator-(AWR)-based bandpass filters (BPFs) with input-reflectionless behavior in both their passband and stopband regions. The proposed concept is based on acoustic-wave-lumped-element resonators (AWLRs) that are incorporated in series-cascaded reflectionless stages (RLSs). Each RLS comprises a first-order bandpass section-shaped by three impedance inverters and one AWLR-and a first-order resistively-terminated bandstop section-shaped by two impedance inverters and one AWLR-that are designed to exhibit complementary transfer functions. In this manner, an input-reflectionless behavior can be obtained both at the passband and stopband regions of the filter. In addition, the use of AWLRs in the RLSs facilitates the realization of high-quality-factor quasi-elliptic-type transfer functions with fractional bandwidths (FBWs) that are wider than the electromechanical coupling coefficient (kt 2 ) of its constituent AWRs. For proof-of-concept validation purposes, one- and two-state prototypes were manufactured, and measured at 418 MHz using commercially-available surface-acoustic-wave resonators.
; ;
Award ID(s):
Publication Date:
Journal Name:
2018 IEEE/MTT-S International Microwave Symposium - IMS
Sponsoring Org:
National Science Foundation
More Like this
  1. A coupling-matrix approach for the theoretical design of a type of input-reflectionless RF/microwave bandpass filters (BPFs) and bandstop filters (BSFs) is presented. They are based on diplexer architectures with arbitrary-order bandpass and bandstop filtering channels that feature complementary transfer functions. The transmission behavior of these reflectionless filters is defined by the channel that is not loaded at its output, whereas the input-signal energy that is not transmitted by this branch is completely dissipated by the loading resistor of the other channel. Analytical formulas for the coupling coefficients for the first-to-fourth-order filter designs are provided and validated through several synthesis examples. This theoretical design methodology, along with an optimization step, is also exploited to design input-quasi-reflectionless quasielliptic- type BPFs with a transmission-zero-(TZ)-generation cell in their bandpass filtering channel. In addition, the application of the proposed input-reflectionless BPF and BSF networks to input-quasi-reflectionless multiplexer design is approached. It is shown that a single resistively terminated multi-band BSF branch can absorb the input-signal energy not transmitted by the multiplexer channels in their common stopband regions to achieve quasi-reflectionless characteristics at its input. Moreover, experimental microstrip prototypes consisting of 2-GHz third-order BPF and BSF circuits, a 2-GHz sharp-rejection thirdorder BPF with two close-to-passband TZs,more »and a second-order diplexer device with channels centered at 1.75 and 2.1 GHz are developed and measured.« less
  2. The design of mixed-technology quasi-reflectionless planar bandpass filters (BPFs), bandstop filters (BSFs), and multi-band filters is reported. The proposed quasi-reflectionless filter architectures comprise a main filtering section that determines the power transmission response (bandpass, bandstop, or multi-band type) of the overall circuit network and auxiliary sections that absorb the reflected radio-frequency (RF) signal energy. By loading the input and output ports of the main filtering section with auxiliary filtering sections that exhibit a complementary transfer function with regard to the main one, a symmetric quasi-reflectionless behavior can be obtained at both accesses of the overall filter. The operating principles of the proposed filter concept are shown through synthesized first-order BPF and BSF designs. Selectivity-increase techniques are also described. They are based on: (i) cascading in-series multiple first-order stages and (ii) increasing the order of the filtering sections. Moreover, the RF design of quasi-reflectionless multi-band BPFs and BSFs is discussed. A hybrid integration scheme in which microstrip-type and lumped-elements are effectively combined within the filter volume is investigated for size miniaturization purposes. For experimental validation purposes, two quasi-reflectionless BPF prototypes (one- and two-stage architectures) centered at 2 GHz and a second-order BSF prototype centered at 1 GHz were designed, manufactured, andmore »measured.« less
  3. This paper reports on quasi-elliptic dual-band bandpass filters (BPFs) that were designed for the Filter Student Design Competition of the 2019 European Microwave Week. The proposed lumped-element (LE) BPF concept is based on two dual-band transversal cells and one multi-resonant cell that allow the realization of symmetric and asymmetric dual-band transfer functions shaped by six poles and five transmission zeros. A compact implementation scheme based on LE series resonators is proposed for size compactness and wide spurious free out-of-band response. For proof-of-concept demonstration purposes, a dual-band LE prototype with two passbands centered 1 and 1.5 GHz was designed, manufactured, and measured. It exhibited the following radio frequency measured performance characteristics. Passbands centered at 1.02 and 1.45 GHz, minimum insertion loss levels of 2.0 and 2.7 dB, and bandwidth of 146 and 105 MHz, respectively, for the first and the second passband, and out-of-band rejection >30 dB between 0 and 894 MHz, 1.17–1.34 GHz, and 1.72–6.9 GHz.
  4. A class of out-of-phase 3-dB bandpass-filtering couplers with input-reflectionless capabilities is presented. To obtain the bandpass-filter (BPF) functionality, identical BPF sections are respectively co-integrated in the coupler signal paths from the input to the direct and coupled ports. Furthermore, a resistivelyterminated bandstop-filter (BSF) section with complementary transfer function with regard to the one of the BPF section is loaded at the coupler input access. In this manner, the RF inputsignal energy that is not transmitted to the direct and coupled terminals is dissipated by the loading resistor of the BSF section. Hence, the input-reflectionless behavior is realized. Optimizationbased first-to-third-order design examples are shown. Moreover, for practical-validation purposes of this RF tri-functional device, a 2-GHz second-order microstrip prototype is built and tested.
  5. Abstract We outline and interpret a recently developed theory of impedance matching or reflectionless excitation of arbitrary finite photonic structures in any dimension. The theory includes both the case of guided wave and free-space excitation. It describes the necessary and sufficient conditions for perfectly reflectionless excitation to be possible and specifies how many physical parameters must be tuned to achieve this. In the absence of geometric symmetries, such as parity and time-reversal, the product of parity and time-reversal, or rotational symmetry, the tuning of at least one structural parameter will be necessary to achieve reflectionless excitation. The theory employs a recently identified set of complex frequency solutions of the Maxwell equations as a starting point, which are defined by having zero reflection into a chosen set of input channels, and which are referred to as R-zeros. Tuning is generically necessary in order to move an R-zero to the real frequency axis, where it becomes a physical steady-state impedance-matched solution, which we refer to as a reflectionless scattering mode (RSM). In addition, except in single-channel systems, the RSM corresponds to a particular input wavefront, and any other wavefront will generally not be reflectionless. It is useful to consider the theory asmore »representing a generalization of the concept of critical coupling of a resonator, but it holds in arbitrary dimension, for arbitrary number of channels, and even when resonances are not spectrally isolated. In a structure with parity and time-reversal symmetry (a real dielectric function) or with parity–time symmetry, generically a subset of the R-zeros has real frequencies, and reflectionless states exist at discrete frequencies without tuning. However, they do not exist within every spectral range, as they do in the special case of the Fabry–Pérot or two-mirror resonator, due to a spontaneous symmetry-breaking phenomenon when two RSMs meet. Such symmetry-breaking transitions correspond to a new kind of exceptional point, only recently identified, at which the shape of the reflection and transmission resonance lineshape is flattened. Numerical examples of RSMs are given for one-dimensional multimirror cavities, a two-dimensional multiwaveguide junction, and a multimode waveguide functioning as a perfect mode converter. Two solution methods to find R-zeros and RSMs are discussed. The first one is a straightforward generalization of the complex scaling or perfectly matched layer method and is applicable in a number of important cases; the second one involves a mode-specific boundary matching method that has only recently been demonstrated and can be applied to all geometries for which the theory is valid, including free space and multimode waveguide problems of the type solved here.« less