skip to main content

Title: Input-Reflectionless Out-of-Phase 3-dB Bandpass Filtering Couplers
A class of out-of-phase 3-dB bandpass-filtering couplers with input-reflectionless capabilities is presented. To obtain the bandpass-filter (BPF) functionality, identical BPF sections are respectively co-integrated in the coupler signal paths from the input to the direct and coupled ports. Furthermore, a resistivelyterminated bandstop-filter (BSF) section with complementary transfer function with regard to the one of the BPF section is loaded at the coupler input access. In this manner, the RF inputsignal energy that is not transmitted to the direct and coupled terminals is dissipated by the loading resistor of the BSF section. Hence, the input-reflectionless behavior is realized. Optimizationbased first-to-third-order design examples are shown. Moreover, for practical-validation purposes of this RF tri-functional device, a 2-GHz second-order microstrip prototype is built and tested.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE Radio and Wireless Symposium (RWS)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of mixed-technology quasi-reflectionless planar bandpass filters (BPFs), bandstop filters (BSFs), and multi-band filters is reported. The proposed quasi-reflectionless filter architectures comprise a main filtering section that determines the power transmission response (bandpass, bandstop, or multi-band type) of the overall circuit network and auxiliary sections that absorb the reflected radio-frequency (RF) signal energy. By loading the input and output ports of the main filtering section with auxiliary filtering sections that exhibit a complementary transfer function with regard to the main one, a symmetric quasi-reflectionless behavior can be obtained at both accesses of the overall filter. The operating principles of the proposed filter concept are shown through synthesized first-order BPF and BSF designs. Selectivity-increase techniques are also described. They are based on: (i) cascading in-series multiple first-order stages and (ii) increasing the order of the filtering sections. Moreover, the RF design of quasi-reflectionless multi-band BPFs and BSFs is discussed. A hybrid integration scheme in which microstrip-type and lumped-elements are effectively combined within the filter volume is investigated for size miniaturization purposes. For experimental validation purposes, two quasi-reflectionless BPF prototypes (one- and two-stage architectures) centered at 2 GHz and a second-order BSF prototype centered at 1 GHz were designed, manufactured, and measured. 
    more » « less
  2. A coupling-matrix approach for the theoretical design of a type of input-reflectionless RF/microwave bandpass filters (BPFs) and bandstop filters (BSFs) is presented. They are based on diplexer architectures with arbitrary-order bandpass and bandstop filtering channels that feature complementary transfer functions. The transmission behavior of these reflectionless filters is defined by the channel that is not loaded at its output, whereas the input-signal energy that is not transmitted by this branch is completely dissipated by the loading resistor of the other channel. Analytical formulas for the coupling coefficients for the first-to-fourth-order filter designs are provided and validated through several synthesis examples. This theoretical design methodology, along with an optimization step, is also exploited to design input-quasi-reflectionless quasielliptic- type BPFs with a transmission-zero-(TZ)-generation cell in their bandpass filtering channel. In addition, the application of the proposed input-reflectionless BPF and BSF networks to input-quasi-reflectionless multiplexer design is approached. It is shown that a single resistively terminated multi-band BSF branch can absorb the input-signal energy not transmitted by the multiplexer channels in their common stopband regions to achieve quasi-reflectionless characteristics at its input. Moreover, experimental microstrip prototypes consisting of 2-GHz third-order BPF and BSF circuits, a 2-GHz sharp-rejection thirdorder BPF with two close-to-passband TZs, and a second-order diplexer device with channels centered at 1.75 and 2.1 GHz are developed and measured. 
    more » « less
  3. This paper reports on an RF design methodology for acoustic-wave-resonator-(AWR)-based bandpass filters (BPFs) with input-reflectionless behavior in both their passband and stopband regions. The proposed concept is based on acoustic-wave-lumped-element resonators (AWLRs) that are incorporated in series-cascaded reflectionless stages (RLSs). Each RLS comprises a first-order bandpass section-shaped by three impedance inverters and one AWLR-and a first-order resistively-terminated bandstop section-shaped by two impedance inverters and one AWLR-that are designed to exhibit complementary transfer functions. In this manner, an input-reflectionless behavior can be obtained both at the passband and stopband regions of the filter. In addition, the use of AWLRs in the RLSs facilitates the realization of high-quality-factor quasi-elliptic-type transfer functions with fractional bandwidths (FBWs) that are wider than the electromechanical coupling coefficient (kt 2 ) of its constituent AWRs. For proof-of-concept validation purposes, one- and two-state prototypes were manufactured, and measured at 418 MHz using commercially-available surface-acoustic-wave resonators. 
    more » « less
  4. null (Ed.)
    Similar to digital circuits, analog and mixed-signal (AMS) circuits are also susceptible to supply-chain attacks, such as piracy, overproduction, and Trojan insertion. However, unlike digital circuits, the supply-chain security of AMS circuits is less explored. In this work, we propose to perform "logic-locking" on the digital section of the AMS circuits. The idea is to make the analog design intentionally suffer from the effects of process variations, which impede the operation of the circuit. Only on applying the correct key, the effect of process variations are mitigated, and the analog circuit performs as desired. To this end, we render certain components in the analog circuit configurable. We propose an analysis to dictate which components need to be configurable to maximize the effect of an incorrect key. We conduct our analysis on the bandpass filter (BPF), low-noise amplifier (LNA), and low-dropout voltage regulator LDO) for both correct and incorrect keys to the locked optimizer. We also show experimental results for our technique on a BPF. We also analyze the effect of aging on our locking technique to ensure the reliability of the circuit with the correct key. 
    more » « less
  5. Similar to digital circuits, analog circuits are also susceptible to supply-chain attacks. There are several analog locking techniques proposed to combat these supply-chain attacks. However, there exists no elaborate evaluation procedure to estimate the resilience offered by these techniques. Evaluating analog defenses requires the usage of non-Boolean variables, such as bias current and gain. Hence, in this work, we evaluate the resilience of the analog-only locks and analog and mixed-signal (AMS) locks using satisfiability modulo theories (SMTs). We demonstrate our attack on five analog locking techniques and three AMS locking techniques. The attack is demonstrated on commonly used circuits, such as bandpass filter (BPF), low-noise amplifier (LNA), and low-dropout (LDO) voltage regulator. Attack results on analog-only locks show that the attacker, knowing the required bias current or voltage range, can determine the key. Likewise, knowing the protected input patterns (PIPs), the attacker can determine the key to unlock the AMS locks. We then extend our attack to break the existing analog camouflaging technique. 
    more » « less