- Award ID(s):
- 1705007
- Publication Date:
- NSF-PAR ID:
- 10106110
- Journal Name:
- Proceedings of the ... ACM International Symposium on Mobile Ad Hoc Networking & Computing
- ISSN:
- 1548-1832
- Sponsoring Org:
- National Science Foundation
More Like this
-
Darmont, J ; Novikov, B. ; Wrembel, R. (Ed.)Bitcoin [12] is a successful and interesting example of a global scale peer-to-peer cryptocurrency that integrates many techniques and protocols from cryptography, distributed systems, and databases. The main underlying data structure is blockchain, a scalable fully replicated structure that is shared among all participants and guarantees a consistent view of all user transactions by all participants in the system. In a blockchain, nodes agree on their shared states across a large network of untrusted participants. Although originally devised for cryptocurrencies, recent systems exploit its many unique features such as transparency, provenance, fault tolerance, and authenticity to support a wide range of distributed applications. Bitcoin and other cryptocurrencies use permissionless blockchains. In a permissionless blockchain, the network is public, and anyone can participate without a specific identity. Many other distributed applications, such as supply chain management and healthcare, are deployed on permissioned blockchains consisting of a set of known, identified nodes that still might not fully trust each other. This paper illustrates some of the main challenges and opportunities from a database perspective in the many novel and interesting application domains of blockchains. These opportunities are illustrated using various examples from recent research in both permissionless and permissioned blockchains. Two mainmore »
-
Public blockchains have spurred the growing popularity of decentralized transactions and smart contracts, especially on the financial market. However, public blockchains exhibit their limitations on the transaction throughput, storage availability, and compute capacity. To avoid transaction gridlock, public blockchains impose large fees and per-block resource limits, making it difficult to accommodate the ever-growing high transaction demand. Previous research endeavors to improve the scalability and performance of blockchain through various technologies, such as side-chaining, sharding, secured off-chain computation, communication network optimizations, and efficient consensus protocols. However, these approaches have not attained a widespread adoption due to their inability in delivering a cloud-like performance, in terms of the scalability in transaction throughput, storage, and compute capacity. In this work, we determine that the major obstacle to public blockchain scalability is their underlying unstructured P2P networks. We further show that a centralized network can support the deployment of decentralized smart contracts. We propose a novel approach for achieving scalable decentralization: instead of trying to make blockchain scalable, we deliver decentralization to already scalable cloud by using an Ethereum smart contract. We introduce Blockumulus, a framework that can deploy decentralized cloud smart contract environments using a novel technique called overlay consensus. Through experiments, wemore »
-
Abstract Double auction mechanisms have been designed to trade a variety of divisible resources (e.g., electricity, mobile data, and cloud resources) among distributed agents. In such divisible double auction, all the agents (both buyers and sellers) are expected to submit their bid profiles, and dynamically achieve the best responses. In practice, these agents may not trust each other without a market mediator. Fortunately, smart contract is extensively used to ensure digital agreement among mutually distrustful agents. The consensus protocol helps the smart contract execution on the blockchain to ensure strong integrity and availability. However, severe privacy risks would emerge in the divisible double auction since all the agents should disclose their sensitive data such as the bid profiles (i.e., bid amount and prices in different iterations) to other agents for resource allocation and such data are replicated on all the nodes in the network. Furthermore, the consensus requirements will bring a huge burden for the blockchain, which impacts the overall performance. To address these concerns, we propose a hybridized TEE-Blockchain system (system and auction mechanism co-design) to privately execute the divisible double auction. The designed hybridized system ensures privacy, honesty and high efficiency among distributed agents. The bid profiles aremore »
-
The unique features of blockchains such as immutability, transparency, provenance, and authenticity have been used by many large-scale data management systems to deploy a wide range of distributed applications including supply chain management, healthcare, and crowdworking in permissioned settings. Unlike permissionless settings, e.g., Bitcoin, where the network is public, and anyone can participate without a specific identity, a permissioned blockchain system consists of a set of known, identified nodes that might not fully trust each other. While the characteristics of permissioned blockchains are appealing to a wide range of largescale data management systems, these systems, have to satisfy four main requirements: confidentiality, verifiability, performance, and scalability. Various approaches have been developed in industry and academia to satisfy these requirements with varying assumptions and costs. The focus of this tutorial is on presenting many of these techniques while highlighting the trade-offs among them. We demonstrate the practicality of such techniques in real-life by presenting three different applications, i.e., supply chain management, large-scale databases, and multi-platform crowdworking environments, and show how those techniques can be utilized to meet the requirements of such applications
-
Calciu, Irina ; Kuenning, Geoff (Ed.)We present RAINBLOCK, a public blockchain that achieves high transaction throughput without modifying the proof-ofwork consensus. The chief insight behind RAINBLOCK is that while consensus controls the rate at which new blocks are added to the blockchain, the number of transactions in each block is limited by I/O bottlenecks. Public blockchains like Ethereum keep the number of transactions in each block low so that all participating servers (miners) have enough time to process a block before the next block is created. By removing the I/O bottlenecks in transaction processing, RAINBLOCK allows miners to process more transactions in the same amount of time. RAINBLOCK makes two novel contributions: the RAINBLOCK architecture that removes I/O from the critical path of processing transactions (txs), and the distributed, multiversioned DSM-TREE data structure that stores the system state efficiently. We evaluate RAINBLOCK using workloads based on public Ethereum traces (including smart contracts). We show that a single RAINBLOCK miner processes 27.4K txs per second (27× higher than a single Ethereum miner). In a geo-distributed setting with four regions spread across three continents, RAINBLOCK miners process 20K txs per second.