skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 AM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Blockumulus: A Scalable Framework for Smart Contracts on the Cloud
Public blockchains have spurred the growing popularity of decentralized transactions and smart contracts, especially on the financial market. However, public blockchains exhibit their limitations on the transaction throughput, storage availability, and compute capacity. To avoid transaction gridlock, public blockchains impose large fees and per-block resource limits, making it difficult to accommodate the ever-growing high transaction demand. Previous research endeavors to improve the scalability and performance of blockchain through various technologies, such as side-chaining, sharding, secured off-chain computation, communication network optimizations, and efficient consensus protocols. However, these approaches have not attained a widespread adoption due to their inability in delivering a cloud-like performance, in terms of the scalability in transaction throughput, storage, and compute capacity. In this work, we determine that the major obstacle to public blockchain scalability is their underlying unstructured P2P networks. We further show that a centralized network can support the deployment of decentralized smart contracts. We propose a novel approach for achieving scalable decentralization: instead of trying to make blockchain scalable, we deliver decentralization to already scalable cloud by using an Ethereum smart contract. We introduce Blockumulus, a framework that can deploy decentralized cloud smart contract environments using a novel technique called overlay consensus. Through experiments, we demonstrate that Blockumulus is scalable in all three dimensions: computation, data storage, and transaction throughput. Besides eliminating the current code execution and storage restrictions, Blockumulus delivers a transaction latency between 2 and 5 seconds under normal load. Moreover, the stress test of our prototype reveals the ability to execute 20,000 simultaneous transactions under 26 seconds, which is on par with the average throughput of worldwide credit card transactions.  more » « less
Award ID(s):
2000681
PAR ID:
10318559
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Calciu, Irina; Kuenning, Geoff (Ed.)
    We present RAINBLOCK, a public blockchain that achieves high transaction throughput without modifying the proof-ofwork consensus. The chief insight behind RAINBLOCK is that while consensus controls the rate at which new blocks are added to the blockchain, the number of transactions in each block is limited by I/O bottlenecks. Public blockchains like Ethereum keep the number of transactions in each block low so that all participating servers (miners) have enough time to process a block before the next block is created. By removing the I/O bottlenecks in transaction processing, RAINBLOCK allows miners to process more transactions in the same amount of time. RAINBLOCK makes two novel contributions: the RAINBLOCK architecture that removes I/O from the critical path of processing transactions (txs), and the distributed, multiversioned DSM-TREE data structure that stores the system state efficiently. We evaluate RAINBLOCK using workloads based on public Ethereum traces (including smart contracts). We show that a single RAINBLOCK miner processes 27.4K txs per second (27× higher than a single Ethereum miner). In a geo-distributed setting with four regions spread across three continents, RAINBLOCK miners process 20K txs per second. 
    more » « less
  2. null (Ed.)
    The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm's viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithms 
    more » « less
  3. The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm’s viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithms. 
    more » « less
  4. This paper presents a novel framework for creating a recoverable rare disease patient identity system using blockchain and smart contracts, decentralized identifiers (DIDs), and the InterPlanetary File System (IPFS). Smart contracts are executable code that can be written into decentralized storage such as blockchains in order to enable tamper-proof transactions of data. DIDs provide a secure, decentralized, and extensible way to create, store, and manage digital identities, while IPFS provides a distributed, immutable, and secure storage system for patient identities. Utilizing these technologies with smart contracts, we created a framework to store persistent medical records of patients. Smart contracts additionally allow account recovery without the use of any centralized authority. The framework enables healthcare providers to securely access a patient's data while maintaining the patient's ownership of their data. The paper explores the advantages of using a decentralized identity system and highlights the potential of this approach to improve the security and universality of medical records for patients with rare diseases. 
    more » « less
  5. While permissioned blockchains enable a family of data center applications, existing systems suffer from imbalanced loads across compute and memory, exacerbating the underutilization of cloud resources. This paper presents FlexChain , a novel permissioned blockchain system that addresses this challenge by physically disaggregating CPUs, DRAM, and storage devices to process different blockchain workloads efficiently. Disaggregation allows blockchain service providers to upgrade and expand hardware resources independently to support a wide range of smart contracts with diverse CPU and memory demands. Moreover, it ensures efficient resource utilization and hence prevents resource fragmentation in a data center. We have explored the design of XOV blockchain systems in a disaggregated fashion and developed a tiered key-value store that can elastically scale its memory and storage. Our design significantly speeds up the execution stage. We have also leveraged several techniques to parallelize the validation stage in FlexChain to further improve the overall blockchain performance. Our evaluation results show that FlexChain can provide independent compute and memory scalability, while incurring at most 12.8% disaggregation overhead. FlexChain achieves almost identical throughput as the state-of-the-art distributed approaches with significantly lower memory and CPU consumption for compute-intensive and memory-intensive workloads respectively. 
    more » « less