Abstract We review recent developments in Jackiw–Teitelboim gravity. This is a simple solvable model of quantum gravity in two dimensions (that arises e.g. from the s-wave sector of higher dimensional gravity systems with spherical symmetry). Due to its solvability, it has proven to be a fruitful toy model to analyze important questions such as the relation between black holes and chaos, the role of wormholes in black hole physics and holography, and the way in which information that falls into a black hole can be recovered.
more »
« less
Maximal Tests in Minimal Gravity
Recent tests have generated impressive reach in the gravity sector of the Standard-Model Extension. This contribution to the CPT’19 proceedings sum- marizes this progress and maps the structure of work in the gravity sector.
more »
« less
- Award ID(s):
- 1806990
- PAR ID:
- 10106114
- Date Published:
- Journal Name:
- Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Complementing previous theoretical and experimental work, we explore new types of short-range modifications to Newtonian gravity arising from spacetime-symmetry breaking. The first non-perturbative, i.e. to all orders in coefficients for Lorentz-symmetry breaking, are constructed in the Newtonian limit. We make use of the generic symmetry-breaking terms modifying the gravity sector and examine the isotropic coefficient limit. The results show new kinds of force law corrections, going beyond the standard Yukawa parameterization. Further, there are ranges of the values of the coefficients that could make the resulting forces large compared to the Newtonian prediction at short distances. Experimental signals are discussed for typical test mass arrangements.more » « less
-
A bstract The infrared behavior of gravity in 4D asymptotically flat spacetime exhibits a rich set of symmetries. This has led to a proposed holographic duality between the gravitational $$ \mathcal{S} $$ S -matrix and a dual field theory living on the celestial sphere. Most of our current understanding of the dictionary relies on knowledge of the 4D bulk. As such, identifying intrinsic 2D models that capture the correct symmetries and soft dynamics of 4D gravity is an active area of interest. Here we propose that a 2D generalization of SYK provides an instructive toy model for the soft limit of the gravitational sector in 4D asymptotically flat spacetime. We find that the symmetries and soft dynamics of the 2D SYK model capture the salient features of the celestial theory: exhibiting chaotic dynamics, conformal invariance, and a w 1+ ∞ symmetry. The holographic map from 2D SYK operators to the 4D bulk employs the Penrose twistor transform.more » « less
-
Abstract Hot subdwarf B (sdB) stars are post-main-sequence stars of high temperature and gravity. Approximately 30% of sdBs exhibit stable pressure and/or gravity-mode pulsations, which can be used via the timing method to test for companion stars and determine their orbital solutions. We used short cadence data from the Transiting Exoplanet Survey Satellite (TESS) to search for previously undiscovered companions to sdBs. In this paper, we focus on searching for companions with orbital periods shorter than 13.5 days which are detectable within one sector of TESS data (about 27 days). The timing method requires that we derive pulsation frequencies in subsets of data significantly shorter than the periods we are searching for, which we set at 0.5–1.5 day. We investigated ten sdB stars with previously detectedp-mode pulsations for which at least onep-mode pulsation remains detectable with a signal-to-noise ratio > 4 within data subsets of duration 0.5–1.5 day. We find that two (TIC 202354658 and TIC 69298924) of these ten sdB stars likely have white-dwarf companions and set limits on companion masses for the other eight sdB stars.more » « less
-
Comparison of Thermospheric Winds Measured by GOCE and Ground‐Based FPIs at Low and Middle LatitudesAbstract The re‐estimates of thermospheric winds from the Gravity field and steady‐state Ocean Circulation Explorer (GOCE) accelerometer measurements were released in April 2019. In this study, we compared the new‐released GOCE crosswind (cross‐track wind) data with the horizontal winds measured by four Fabry‐Perot interferometers (FPIs) located at low and middle latitudes. Our results show that during magnetically quiet periods the GOCE crosswind on the dusk side has typical seasonal variations with largest speed around December and the lowest speed around June, which is consistent with the ground‐FPI measurements. The correlation coefficients between the four stations and GOCE crosswind data all reach around 0.6. However, the magnitude of the GOCE crosswind is somehow larger than the FPIs wind, with average ratios between 1.37 and 1.69. During geomagnetically active periods, the GOCE and FPI derived winds have a lower agreement, with average ratios of 0.85 for the Asian station (XL) and about 2.15 for the other three American stations (PAR, Arecibo and CAR). The discrepancies of absolute wind values from the GOCE accelerometer and ground‐based FPIs should be mainly due to the different measurement principles of the two techniques. Our results also suggested that the wind measurements from the XL FPI located at the Asian sector has the same quality with the FPIs at the American sector, although with lower time resolution.more » « less
An official website of the United States government

