skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short-range forces due to Lorentz-symmetry violation
Abstract Complementing previous theoretical and experimental work, we explore new types of short-range modifications to Newtonian gravity arising from spacetime-symmetry breaking. The first non-perturbative, i.e. to all orders in coefficients for Lorentz-symmetry breaking, are constructed in the Newtonian limit. We make use of the generic symmetry-breaking terms modifying the gravity sector and examine the isotropic coefficient limit. The results show new kinds of force law corrections, going beyond the standard Yukawa parameterization. Further, there are ranges of the values of the coefficients that could make the resulting forces large compared to the Newtonian prediction at short distances. Experimental signals are discussed for typical test mass arrangements.  more » « less
Award ID(s):
2207734
PAR ID:
10451959
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
4
ISSN:
0264-9381
Page Range / eLocation ID:
045006
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we review the effective field theory framework to search for Lorentz and CPT symmetry breaking during the propagation of gravitational waves. The article is written so as to bridge the gap between the theory of spacetime-symmetry breaking and the analysis of gravitational-wave signals detected by ground-based interferometers. The primary physical effects beyond General Relativity that we explore here are dispersion and birefringence of gravitational waves. We discuss their implementation in the open-source LIGO-Virgo algorithm library suite, and we discuss the statistical method used to perform a Bayesian inference of the posterior probability of the coefficients for symmetry-breaking. We present preliminary results of this work in the form of simulations of modified gravitational waveforms, together with sensitivity studies of the measurements of the coefficients for Lorentz and CPT violation. The findings show the high potential of gravitational wave sources across the sky to sensitively probe for these signals of new physics. 
    more » « less
  2. A complete canonical formulation of general covariance makes it possible to construct new modified theories of gravity that are not of higher-curvature form, as shown here in a spherically symmetric setting. The usual uniqueness theorems are evaded by using a crucial and novel ingredient, allowing for fundamental fields of gravity distinct from an emergent space-time metric that provides a geometrical structure to all solutions. As specific examples, there are new expansion-shear couplings in cosmological models, a form of modified Newtonian dynamics can appear in a space-time covariant theory without introducing extra fields, and related effects help to make effective models of canonical quantum gravity fully consistent with general covariance. 
    more » « less
  3. Symmetry-breaking in coupled, identical, fast–slow systems produces a rich, dramatic variety of dynamical behavior—such as amplitudes and frequencies differing by an order of magnitude or more and qualitatively different rhythms between oscillators, corresponding to different functional states. We present a novel method for analyzing these systems. It identifies the key geometric structures responsible for this new symmetry-breaking, and it shows that many different types of symmetry-breaking rhythms arise robustly. We find symmetry-breaking rhythms in which one oscillator exhibits small-amplitude oscillations, while the other exhibits phase-shifted small-amplitude oscillations, large-amplitude oscillations, mixed-mode oscillations, or even undergoes an explosion of limit cycle canards. Two prototypical fast–slow systems illustrate the method: the van der Pol equation that describes electrical circuits and the Lengyel–Epstein model of chemical oscillators. 
    more » « less
  4. Surface waves are important for remote sensing, air–sea exchange, and underwater acoustics. The short gravity wave spectrum is azimuthally broad and bimodal. However, widely used wave models fail to reproduce the degree of observed spreading and azimuthal bimodality. Recent studies show that an azimuthally narrow spectral breaking dissipation due to long‐wave short‐wave modulation significantly improves model performance, highlighting the importance of better understanding the directionality of breaking kinematics. We utilized visible stereo imagery to investigate the directional wave‐breaking kinematics relative to the energy spectrum under aligned and misaligned winds and dominant waves. The results show that the statistical distribution of wave‐breaking kinematics closely aligns with the direction of the dominant waves and is azimuthally unimodal and narrower than the bimodal energy spectrum. These findings confirm the importance of exploring the directionality of breaking to improve our understanding of the spectral energy balance and spectral wave models within the short‐gravity range. 
    more » « less
  5. null (Ed.)
    Abstract Microscale propulsion impacts a diverse array of fields ranging from biology and ecology to health applications, such as infection, fertility, drug delivery, and microsurgery. However, propulsion in such viscous drag-dominated fluid environments is highly constrained, with time-reversal and geometric symmetries ruling out entire classes of propulsion. Here, we report the spontaneous symmetry-breaking propulsion of rotating spherical microparticles within non-Newtonian fluids. While symmetry analysis suggests that propulsion is not possible along the fore-aft directions, we demonstrate the existence of two equal and opposite propulsion states along the sphere’s rotation axis. We propose and experimentally corroborate a propulsion mechanism for these spherical microparticles, the simplest microswimmers to date, arising from nonlinear viscoelastic effects in rotating flows similar to the rod-climbing effect. Similar possibilities of spontaneous symmetry-breaking could be used to circumvent other restrictions on propulsion, revising notions of microrobotic design and control, drug delivery, microscale pumping, and locomotion of microorganisms. 
    more » « less