skip to main content

Title: Quantum algorithms and lower bounds for convex optimization
While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function over an n -dimensional convex body using O ~ ( n ) queries to oracles that evaluate the objective function and determine membership in the convex body. This represents a quadratic improvement over the best-known classical algorithm. We also study limitations on the power of quantum computers for general convex optimization, showing that it requires Ω ~ ( n ) evaluation queries and Ω ( n ) membership queries.
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an n-dimensional convex body within multiplicative error ϵ using Õ (n3+n2.5/ϵ) queries to a membership oracle and Õ (n5+n4.5/ϵ) additional arithmetic operations. For comparison, the best known classical algorithm uses Õ (n4+n3/ϵ2) queries and Õ (n6+n5/ϵ2) additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error.
  2. We investigate the approximability of the following optimization problem. The input is an n× n matrix A=(Aij) with real entries and an origin-symmetric convex body K⊂ ℝn that is given by a membership oracle. The task is to compute (or approximate) the maximum of the quadratic form ∑i=1n∑j=1n Aij xixj=⟨ x,Ax⟩ as x ranges over K. This is a rich and expressive family of optimization problems; for different choices of matrices A and convex bodies K it includes a diverse range of optimization problems like max-cut, Grothendieck/non-commutative Grothendieck inequalities, small set expansion and more. While the literature studied these special cases using case-specific reasoning, here we develop a general methodology for treatment of the approximability and inapproximability aspects of these questions. The underlying geometry of K plays a critical role; we show under commonly used complexity assumptions that polytime constant-approximability necessitates that K has type-2 constant that grows slowly with n. However, we show that even when the type-2 constant is bounded, this problem sometimes exhibits strong hardness of approximation. Thus, even within the realm of type-2 bodies, the approximability landscape is nuanced and subtle. However, the link that we establish between optimization and geometry of Banach spaces allows usmore »to devise a generic algorithmic approach to the above problem. We associate to each convex body a new (higher dimensional) auxiliary set that is not convex, but is approximately convex when K has a bounded type-2 constant. If our auxiliary set has an approximate separation oracle, then we design an approximation algorithm for the original quadratic optimization problem, using an approximate version of the ellipsoid method. Even though our hardness result implies that such an oracle does not exist in general, this new question can be solved in specific cases of interest by implementing a range of classical tools from functional analysis, most notably the deep factorization theory of linear operators. Beyond encompassing the scenarios in the literature for which constant-factor approximation algorithms were found, our generic framework implies that that for convex sets with bounded type-2 constant, constant factor approximability is preserved under the following basic operations: (a) Subspaces, (b) Quotients, (c) Minkowski Sums, (d) Complex Interpolation. This yields a rich family of new examples where constant factor approximations are possible, which were beyond the reach of previous methods. We also show (under commonly used complexity assumptions) that for symmetric norms and unitarily invariant matrix norms the type-2 constant nearly characterizes the approximability of quadratic maximization.« less
  3. We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let f be an m -bit Boolean function and consider an n -bit function F obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has quantum query complexity Q ( f ) , we give an algorithm for evaluating F using O ~ ( Q ( f ) ⋅ n ) quantum queries. This improves on the bound of O ( Q ( f ) ⋅ n ) that follows by treating each conjunction independently, and our bound is tight for worst-case choices of f . Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of f .By recursively applying our composition theorems, we obtain a nearly optimal O ~ ( n 1 − 2 − d ) upper bound on the quantum query complexity and approximate degree of linear-size depth- d AC 0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC 0 circuits.As anmore »additional consequence, we show that AC 0 ∘ ⊕ circuits of depth d + 1 require size Ω ~ ( n 1 / ( 1 − 2 − d ) ) ≥ ω ( n 1 + 2 − d ) to compute the Inner Product function even on average. The previous best size lower bound was Ω ( n 1 + 4 − ( d + 1 ) ) and only held in the worst case (Cheraghchi et al., JCSS 2018).« less
  4. Dictionaries remain the most well studied class of data structures. A dictionary supports insertions, deletions, membership queries, and usually successor, predecessor, and extract-min. In a RAM, all such operations take O(log n) time on n elements. Dictionaries are often cross-referenced as follows. Consider a set of tuples {〈ai,bi,ci…〉}. A database might include more than one dictionary on such a set, for example, one indexed on the a ‘s, another on the b‘s, and so on. Once again, in a RAM, inserting into a set of L cross-referenced dictionaries takes O(L log n) time, as does deleting. The situation is more interesting in external memory. On a Disk Access Machine (DAM), B-trees achieve O(logB N) I/Os for insertions and deletions on a single dictionary and K-element range queries take optimal O(logB N + K/B) I/Os. These bounds are also achievable by a B-tree on cross-referenced dictionaries, with a slowdown of an L factor on insertion and deletions. In recent years, both the theory and practice of external- memory dictionaries has been revolutionized by write- optimization techniques. A dictionary is write optimized if it is close to a B-tree for query time while beating B-trees on insertions. The best (and optimal) dictionariesmore »achieve a substantially improved insertion and deletion cost of amortized I/Os on a single dictionary while maintaining optimal O(log1+B∊ N + K/B)- I/O range queries. Although write optimization still helps for insertions into cross-referenced dictionaries, its value for deletions would seem to be greatly reduced. A deletion into a cross- referenced dictionary only specifies a key a. It seems to be necessary to look up the associated values b, c … in order to delete them from the other dictionaries. This takes Ω(logB N) I/Os, well above the per-dictionary write-optimization budget of So the total deletion cost is In short, for deletions, write optimization offers an advantage over B-trees in that L multiplies a lower order term, but when L = 2, write optimization seems to offer no asymptotic advantage over B-trees. That is, no known query- optimal solution for pairs of cross-referenced dictionaries seem to beat B-trees for deletions. In this paper, we show a lower bound establishing that a pair of cross-referenced dictionaries that are optimal for range queries and that supports deletions cannot match the write optimization bound available to insert-only dictionaries. This result thus establishes a limit to the applicability of write-optimization techniques on which many new databases and file systems are based. Read More:« less
  5. We present a quasi-polynomial time classical algorithm that estimates the partition function of quantum many-body systems at temperatures above the thermal phase transition point. It is known that in the worst case, the same problem is NP-hard below this point. Together with our work, this shows that the transition in the phase of a quantum system is also accompanied by a transition in the hardness of approximation. We also show that in a system of n particles above the phase transition point, the correlation between two observables whose distance is at least Ω(logn) decays exponentially. We can improve the factor of logn to a constant when the Hamiltonian has commuting terms or is on a 1D chain. The key to our results is a characterization of the phase transition and the critical behavior of the system in terms of the complex zeros of the partition function. Our work extends a seminal work of Dobrushin and Shlosman on the equivalence between the decay of correlations and the analyticity of the free energy in classical spin models. On the algorithmic side, our result extends the scope of a recent approach due to Barvinok for solving classical counting problems to quantum many-body systems.