skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum Algorithm for Estimating Volumes of Convex Bodies
Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of ann-dimensional convex body within multiplicative error ε usingÕ(n3+ n2.5/ε) queries to a membership oracle andÕ(n5+n4.5/ε)additional arithmetic operations. For comparison, the best known classical algorithm usesÕ(n3.5+n32)queries andÕ(n5.5+n52)additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of “Chebyshev cooling,” where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requiresΩ (√ n+1/ε)quantum membership queries, which rules out the possibility of exponential quantum speedup innand shows optimality of our algorithm in 1/ε up to poly-logarithmic factors.  more » « less
Award ID(s):
1816695
PAR ID:
10483750
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM Transactions on Quantum Computing
Date Published:
Journal Name:
ACM Transactions on Quantum Computing
Volume:
4
Issue:
3
ISSN:
2643-6809
Page Range / eLocation ID:
1 to 60
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of an n-dimensional convex body within multiplicative error ϵ using Õ (n3+n2.5/ϵ) queries to a membership oracle and Õ (n5+n4.5/ϵ) additional arithmetic operations. For comparison, the best known classical algorithm uses Õ (n4+n3/ϵ2) queries and Õ (n6+n5/ϵ2) additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of "Chebyshev cooling", where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. 
    more » « less
  2. While recent work suggests that quantum computers can speed up the solution of semidefinite programs, little is known about the quantum complexity of more general convex optimization. We present a quantum algorithm that can optimize a convex function over an n -dimensional convex body using O ~ ( n ) queries to oracles that evaluate the objective function and determine membership in the convex body. This represents a quadratic improvement over the best-known classical algorithm. We also study limitations on the power of quantum computers for general convex optimization, showing that it requires Ω ~ ( n ) evaluation queries and Ω ( n ) membership queries. 
    more » « less
  3. Meka, Raghu (Ed.)
    We consider the problem of finding a minimum cut of a weighted graph presented as a single-pass stream. While graph sparsification in streams has been intensively studied, the specific application of finding minimum cuts in streams is less well-studied. To this end, we show upper and lower bounds on minimum cut problems in insertion-only streams for a variety of settings, including for both randomized and deterministic algorithms, for both arbitrary and random order streams, and for both approximate and exact algorithms. One of our main results is an Õ(n/ε) space algorithm with fast update time for approximating a spectral cut query with high probability on a stream given in an arbitrary order. Our result breaks the Ω(n/ε²) space lower bound required of a sparsifier that approximates all cuts simultaneously. Using this result, we provide streaming algorithms with near optimal space of Õ(n/ε) for minimum cut and approximate all-pairs effective resistances, with matching space lower-bounds. The amortized update time of our algorithms is Õ(1), provided that the number of edges in the input graph is at least (n/ε²)^{1+o(1)}. We also give a generic way of incorporating sketching into a recursive contraction algorithm to improve the post-processing time of our algorithms. In addition to these results, we give a random-order streaming algorithm that computes the exact minimum cut on a simple, unweighted graph using Õ(n) space. Finally, we give an Ω(n/ε²) space lower bound for deterministic minimum cut algorithms which matches the best-known upper bound up to polylogarithmic factors. 
    more » « less
  4. We study the bit complexity of two related fundamental computational problems in linear algebra and control theory. Our results are: (1) An Õ(n^{ω+3}a+n⁴a²+n^ωlog(1/ε)) time algorithm for finding an ε-approximation to the Jordan Normal form of an integer matrix with a-bit entries, where ω is the exponent of matrix multiplication. (2) An Õ(n⁶d⁶a+n⁴d⁴a²+n³d³log(1/ε)) time algorithm for ε-approximately computing the spectral factorization P(x) = Q^*(x)Q(x) of a given monic n× n rational matrix polynomial of degree 2d with rational a-bit coefficients having a-bit common denominators, which satisfies P(x)⪰0 for all real x. The first algorithm is used as a subroutine in the second one. Despite its being of central importance, polynomial complexity bounds were not previously known for spectral factorization, and for Jordan form the best previous best running time was an unspecified polynomial in n of degree at least twelve [Cai, 1994]. Our algorithms are simple and judiciously combine techniques from numerical and symbolic computation, yielding significant advantages over either approach by itself. 
    more » « less
  5. Guruswami, Venkatesan (Ed.)
    In a recent work, Chen, Hoza, Lyu, Tal and Wu (FOCS 2023) showed an improved error reduction framework for the derandomization of regular read-once branching programs (ROBPs). Their result is based on a clever modification to the inverse Laplacian perspective of space-bounded derandomization, which was originally introduced by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford and Vadhan (FOCS 2020). In this work, we give an alternative error reduction framework for regular ROBPs. Our new framework is based on a binary recursive formula from the work of Chattopadhyay and Liao (CCC 2020), that they used to construct weighted pseudorandom generators (WPRGs) for general ROBPs. Based on our new error reduction framework, we give alternative proofs to the following results for regular ROBPs of length n and width w, both of which were proved in the work of Chen et al. using their error reduction: - There is a WPRG with error ε that has seed length Õ(log(n)(√{log(1/ε)}+log(w))+log(1/ε)). - There is a (non-black-box) deterministic algorithm which estimates the expectation of any such program within error ±ε with space complexity Õ(log(nw)⋅log log(1/ε)). This was first proved in the work of Ahmadinejad et al., but the proof by Chen et al. is simpler. Because of the binary recursive nature of our new framework, both of our proofs are based on a straightforward induction that is arguably simpler than the Laplacian-based proof in the work of Chen et al. In fact, because of its simplicity, our proof of the second result directly gives a slightly stronger claim: our algorithm computes a ε-singular value approximation (a notion of approximation introduced in a recent work by Ahmadinejad, Peebles, Pyne, Sidford and Vadhan (FOCS 2023)) of the random walk matrix of the given ROBP in space Õ(log(nw)⋅log log(1/ε)). It is not clear how to get this stronger result from the previous proofs. 
    more » « less