skip to main content


Title: Detailed anatomy of the braincase of Macelognathus vagans Marsh, 1884 (Archosauria, Crocodylomorpha) using high resolution tomography and new insights on basal crocodylomorph phylogeny
Background Macelognathus vagans Marsh, 1884 from the Late Jurassic Morrison Fm. of Wyoming was originally described as a dinosaur by Marsh and in 1971 Ostrom suggested crocodilian affinities. In 2005, Göhlich and collaborators identified new material of this species from Colorado as a basal crocodylomorph. However, a partial skull found in association with mandibular and postcranial remains was not described. Methods Due to the small size and delicate structures within the braincase, micro CT studies were performed on this specimen. The new anatomical information was incorporated in a phylogenetic dataset, expanding both character and taxon sampling. Results This new material reinforces the non-crocodyliform crocodylomorph affinities of Macelognathus as it bears a large otic aperture, unfused frontals and lacks ornamentation on the dorsal cranial bones. The internal structures also support these affinities as this specimen bears traits (i.e., heavily pneumatized and expanded basisphenoid; the presence of additional pneumatic features on the braincase; and the otoccipital-quadrate contact) not present in most basal crocodylomorphs. Furthermore, the presence of a wide supraoccipital and a cranioquadrate passage are traits shared with Almadasuchus from the early Late Jurassic of Argentina. Macelognathus was recovered as one of the closest relatives of crocodyliforms, forming a clade (Hallopodidae) with two other Late Jurassic taxa ( Almadasuchus and Hallopus ). Discussion The clade formed by Almadasuchus + Hallopus + Macelognathus , the Hallopodidae, is characterized by a higher degree of suturing of the braincase, posteriorly closed otic aperture (paralleled in mesoeucrocodylians) and cursorial adaptations. Also, the phylogenetic position of this lineage of derived crocodylomorphs as the sister group of Crocodyliformes implies a large amount of unsampled record (ghost lineage), at least 50 million years.  more » « less
Award ID(s):
1636753
NSF-PAR ID:
10106381
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
PeerJ
Volume:
5
ISSN:
2167-8359
Page Range / eLocation ID:
e2801
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Almadasuchus figariiis a basal crocodylomorph recovered from the Upper Jurassic levels of the Cañadón Calcáreo Formation (Oxfordian–Tithonian) of Chubut, Argentina. This taxon is represented by cranial remains, which consist of partial snout and palatal remains; an excellently preserved posterior region of the skull; and isolated postcranial remains. The skull of the only specimen of the monotypicAlmadasuchuswas restudied using high‐resolution computed micro tomography.Almadasuchushas an apomorphic condition in its skull shared with the closest relatives of crocodyliforms (i.e. hallopodids) where the quadrates are sutured to the laterosphenoids and the otoccipital contacts the quadrate posterolaterally, reorganizing the exit of several cranial nerves (e.g. vagus foramen) and the entry of blood vessels (e.g. internal carotids) on the occipital surface of the skull. The endocast is tubular, as previously reported in thalattosuchians, but has a marked posterior step, and a strongly projected floccular recess as in other basal crocodylomorphs. Internally, the skull ofAlmadasuchusis heavily pneumatized, where different air cavities invade the bones of the suspensorium and braincase, both on its dorsal or ventral parts.Almadasuchushas a large basioccipital recess, which is formed by cavities that excavate the basioccipital and the posterior surface of the basisphenoid, and unlike other crocodylomorphs is connected with the basisphenoid pneumatizations. Ventral to the otic capsule, a pneumatic cavity surrounded by the otoccipital and basisphenoid is identified as the rhomboidal recess. The quadrate ofAlmadasuchusis highly pneumatized, being completely hollow, and the dorsal pneumatizations of the braincase are formed by the mastoid and facial antra, and a laterosphenoid cavity (trigeminal diverticulum). To better understand the origins of pneumatic features in living crocodylomorphs we studied cranial pneumaticity in the basal members of Crocodylomorpha and found that: (a) prootic pneumaticity may be a synapomorphy for the whole clade; (b) basisphenoid pneumaticity (pre‐, postcarotid and rostral recesses) is a derived feature among basal crocodylomorphs; (c) quadrate pneumatization is acquired later in the history of the group; and (d) the rhomboidal sinus is a shared derived trait of hallopodids and crocodyliforms. The marine thallatosuchians exhibit a reduction of the pneumaticity of the braincase and this reduction is evaluated considering the two phylogenetic positions proposed for the clade.

     
    more » « less
  2. Abstract

    Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.

     
    more » « less
  3. Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlaniusfrom the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30–65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoidesand other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoidesas a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life.

     
    more » « less
  4. Abstract

    Crocodylomorpha, which includes living crocodylians and their extinct relatives, has a rich fossil record, extending back for more than 200 million years. Unlike modern semi‐aquatic crocodylians, extinct crocodylomorphs exhibited more varied lifestyles, ranging from marine to fully terrestrial forms. This ecological diversity was mirrored by a remarkable morphological disparity, particularly in terms of cranial morphology, which seems to be closely associated with ecological roles in the group. Here, I use geometric morphometrics to comprehensively investigate cranial shape variation and disparity in Crocodylomorpha. I quantitatively assess the relationship between cranial shape and ecology (i.e. terrestrial, aquatic, and semi‐aquatic lifestyles), as well as possible allometric shape changes. I also characterize patterns of cranial shape evolution and identify regime shifts. I found a strong link between shape and size, and a significant influence of ecology on the observed shape variation. Terrestrial taxa, particularly notosuchians, have significantly higher disparity, and shifts to more longirostrine regimes are associated with large‐bodied aquatic or semi‐aquatic species. This demonstrates an intricate relationship between cranial shape, body size and lifestyle in crocodylomorph evolutionary history. Additionally, disparity‐through‐time analyses were highly sensitive to different phylogenetic hypotheses, suggesting the description of overall patterns among distinct trees. For crocodylomorphs, most results agree in an early peak during the Early Jurassic and another in the middle of the Cretaceous, followed by nearly continuous decline until today. Since only crown‐group members survived through the Cenozoic, this decrease in disparity was likely the result of habitat loss, which narrowed down the range of crocodylomorph lifestyles.

     
    more » « less
  5. The superfamily Djadochtatherioidea is a distinctive clade of multituberculates from Upper Cretaceous beds of Mongolia and Inner Mongolia, China. Because many of the 11 included genera are known from skulls, more is known about the cranial anatomy of djadochtatherioids than any other clade of multituberculates. Within Djadochtatherioidea, the most diverse and widely accepted group is the family Djadochtatheriidae. Within the family, the basal genus, Kryptobaatar Kielan-Jaworowska, 1970, is small with a skull length of about 30 mm, whereas the other four genera, Djadochtatherium Simpson, 1925, Catopsbaatar Kielan-Jaworowska, 1994, Tombaatar Rougier et al., 1997, and Mangasbaatar Rougier et al., 2016, have skulls approximately twice as long. Here, we describe a new genus and species, Guibaatar castellanus, based on a single specimen from the Upper Cretaceous Bayan Mandahu Formation, Inner Mongolia that we refer to Djadochtatheriidae. Guibaatar is represented by a relatively complete rostrum, a partial right braincase, and partial lower jaws. As revealed by CT scanning, the specimen is a juvenile, with deciduous enlarged upper and lower incisors with permanent replacements forming, m2 erupting, and M2 forming. Based on the preserved cranial parts, we estimate the skull length to be approximately 50 mm, but as an adult, Guibaatar would have been in the size range of the larger djadochtatheriids. Phylogenetic analysis including Guibaatar, known djadochtatherioids, and outgroups places Guibaatar within Djadochtatheriidae, as sister to a clade of Mangasbaatar and Catopsbaatar. We suspect the relationships of djadochtatherioids are likely to be refined given the announcements by other researchers that skulls are known for the djadochtatheriids Tombaatar and Djadochtatherium, which were previously represented by incomplete material. 
    more » « less