skip to main content


Title: Crocodylomorph cranial shape evolution and its relationship with body size and ecology
Abstract

Crocodylomorpha, which includes living crocodylians and their extinct relatives, has a rich fossil record, extending back for more than 200 million years. Unlike modern semi‐aquatic crocodylians, extinct crocodylomorphs exhibited more varied lifestyles, ranging from marine to fully terrestrial forms. This ecological diversity was mirrored by a remarkable morphological disparity, particularly in terms of cranial morphology, which seems to be closely associated with ecological roles in the group. Here, I use geometric morphometrics to comprehensively investigate cranial shape variation and disparity in Crocodylomorpha. I quantitatively assess the relationship between cranial shape and ecology (i.e. terrestrial, aquatic, and semi‐aquatic lifestyles), as well as possible allometric shape changes. I also characterize patterns of cranial shape evolution and identify regime shifts. I found a strong link between shape and size, and a significant influence of ecology on the observed shape variation. Terrestrial taxa, particularly notosuchians, have significantly higher disparity, and shifts to more longirostrine regimes are associated with large‐bodied aquatic or semi‐aquatic species. This demonstrates an intricate relationship between cranial shape, body size and lifestyle in crocodylomorph evolutionary history. Additionally, disparity‐through‐time analyses were highly sensitive to different phylogenetic hypotheses, suggesting the description of overall patterns among distinct trees. For crocodylomorphs, most results agree in an early peak during the Early Jurassic and another in the middle of the Cretaceous, followed by nearly continuous decline until today. Since only crown‐group members survived through the Cenozoic, this decrease in disparity was likely the result of habitat loss, which narrowed down the range of crocodylomorph lifestyles.

 
more » « less
Award ID(s):
1754596
NSF-PAR ID:
10452613
Author(s) / Creator(s):
 
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
33
Issue:
1
ISSN:
1010-061X
Format(s):
Medium: X Size: p. 4-21
Size(s):
["p. 4-21"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Crocodylians are currently facing evolutionary decline. This is evinced by the rich fossil record of their extinct relatives, crocodylomorphs, which show not only significantly higher levels of biodiversity in the past but also remarkable morphological disparity and higher ecological diversity. In terms of body size, crocodylians are mostly large animals (>2m), especially when com-pared to other extant reptiles. In contrast, extinct crocodylomorphs exhibited a 10-fold range in body sizes, with early terrestrial forms often quite small.Recent research has shed new light on the tempo and mode of crocodylomorph body size evolution,demonstrating a close relationship with ecology, in which physiological constraints contribute to the larger sizes of marine species. Abiotic environmental factors can also play an important role with in individual subgroups. Crocodylians, for instance,have been experiencing an average size increase during Cenozoic, which seems to be related to along-term process of global cooling. 
    more » « less
  2. Abstract

    Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation.

     
    more » « less
  3. Abstract

    Extant crocodylomorphs are semiaquatic ambush predators largely restricted to freshwater or estuarine environments, but the group is ancestrally terrestrial and inhabited a variety of ecosystems in the past. Despite its rich ecological history, little effort has focused on elucidating the historical pattern of ecological transitions in the group. Traditional views suggested a single shift from terrestrial to aquatic in the Early Jurassic. However, new fossil discoveries and phylogenetic analyses tend to imply a multiple-shift model. Here we estimate ancestral habitats across a comprehensive phylogeny and show at least three independent shifts from terrestrial to aquatic and numerous other habitat transitions. Neosuchians first invade freshwater habitats in the Jurassic, with up to four subsequent shifts into the marine realm. Thalattosuchians first appear in marine habitats in the Early Jurassic. Freshwater semiaquatic mahajangasuchids are derived from otherwise terrestrial notosuchians. Within nearly all marine groups, some species return to freshwater environments. Only twice have crocodylomorphs reverted from aquatic to terrestrial habitats, both within the crown group. All living non-alligatorid crocodylians have a keratinised tongue with salt-excreting glands, but the lack of osteological correlates for these adaptations complicates pinpointing their evolutionary origin or loss. Based on the pattern of transitions to the marine realm, our analysis suggests at least four independent origins of saltwater tolerance in Crocodylomorpha.

     
    more » « less
  4. ABSTRACT

    Metriorhynchoid thalattosuchians were a marine clade of Mesozoic crocodylomorphs that evolved from semi‐aquatic, “gharial”‐like species into the obligately pelagic subclade Metriorhynchidae. To explore whether the sensory and physiological demands of underwater life necessitates a shift in rostral anatomy, both in neurology and vasculature, we investigate the trigeminal innervation and potential somatosensory abilities of metriorhynchoids by digitally segmenting the rostral neurovascular canals in CT scans of 10 extant and extinct crocodyliforms. The dataset includes the terrestrial, basal crocodyliformProtosuchus haughtoni, two semi‐aquatic basal metriorhynchoids, four pelagic metriorhynchids and three extant, semi‐aquatic crocodylians. In the crocodylian and basal metriorhynchoid taxa, we find three main neurovascular channels running parallel to one another posteroanteriorly down the length of the snout, whereas in metriorhynchids there are two, and inP. haughtonionly one. Crocodylians appear to be unique in their extensive trigeminal innervation, which is used to supply the integumentary sensory organs (ISOs) involved with their facial somatosensory abilities. Crocodylians have a far higher number of foramina on the maxillary bones than either metriorhynchoids orP. haughtoni, suggesting that the fossil taxa lacked the somatosensory abilities seen in extant species. We posit that the lack of ISO osteological correlates in metriorhynchoids is due to their basal position in Crocodyliformes, rather than a pelagic adaptation. This is reinforced by the hypothesis that extant crocodyliforms, and possibly some neosuchian clades, underwent a long “nocturnal bottleneck”—hinting that their complex network of ISOs evolved in Neosuchia, as a sensory trade‐off to compensate for poorer eyesight.

     
    more » « less
  5. An explanation for why some species, such as non-avian dinosaurs, became extinct, whereas others, including mammals, survived the Cretaceous/Paleogene (K/Pg) mass extinction, 66 million years ago (Ma) is still debated. What were the mechanisms behind community restructuring and the emergence of new ecological opportunities after the K/Pg event, selectively driving extinction and survivorship patterns? Using Markov networks, ecological niche partitioning and Earth System models, we reconstructed disruptions in continental food web dynamics, simulating long-term trajectories in ecospace occupancy through the latest Cretaceous (83.6–66.0 Ma) and early Paleogene (66.0–61.6 Ma). This method uses partial correlation networks to represent how different trophic groups interact in a food web and builds on empirical spatial co-variations to explore dependencies between trophic groups. Our analyses are based on a spatiotemporally and taxonomically standardized dataset, comprising more than 1,600 fossil occurrences representing more than 470 genera of fish, salamanders, frogs, albanerpetontids, lizards, snakes, champsosaurs, turtles, crocodylians, dinosaurs (including birds), and mammals across the best sampled region for this interval, the Western Interior of North America. We explicitly tested whether: 1) shifts in food web architecture underwent major restructuring before and after the K/Pg transition, including whether some trophic guilds were more prone to these shifts than others; and 2) any of these changes were associated with fluctuations in the realized niche space, helping to explain survivorship and extinction patterns at the boundary. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of large herbivores, but that dinosaur niches were otherwise resilient and static until the K/Pg boundary. Smaller terrestrial vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of ecological niche limits that began in the Cretaceous and continued after the extinction. Patterns of mammalian ecological radiation and niche restructuring indicate that these taxa did not simply proliferate after the extinction; rather, their earlier ecological diversification might have helped them survive the K/Pg event, whereas the static niche of dinosaurs might have contributed to their demise. 
    more » « less