skip to main content


Title: Imaging Membrane Curvature inside a FcεRI-Centric Synapse in RBL-2H3 Cells Using TIRF Microscopy with Polarized Excitation
Total internal reflection fluorescence microscopy with polarized excitation (P-TIRF) can be used to image nanoscale curvature phenomena in live cells. We used P-TIRF to visualize rat basophilic leukemia cells (RBL-2H3 cells) primed with fluorescent anti-dinitrophenyl (anti-DNP) immunoglobulin E (IgE) coming into contact with a supported lipid bilayer containing mobile, monovalent DNP, modeling an immunological synapse. The spatial relationship of the IgE-bound high affinity IgE receptor (FcεRI) to the ratio image of P-polarized excitation and S-polarized excitation was analyzed. These studies help correlate the dynamics of cell surface molecules with the mechanical properties of the plasma membrane during synapse formation.  more » « less
Award ID(s):
1727033
NSF-PAR ID:
10106446
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of imaging
Volume:
5
Issue:
7
ISSN:
2313-433X
Page Range / eLocation ID:
63
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Azimuthal beam scanning eliminates the uneven excitation field arising from laser interference in through-objective total internal reflection fluorescence (TIRF) microscopy. The same principle can be applied to scanning angle interference microscopy (SAIM), where precision control of the scanned laser beam presents unique technical challenges for the builders of custom azimuthal scanning microscopes. Accurate synchronization between the instrument computer, beam scanning system and excitation source is required to collect high quality data and minimize sample damage in SAIM acquisitions. Drawing inspiration from open-source prototyping systems, like the Arduino microcontroller boards, we developed a new instrument control platform to be affordable, easily programmed, and broadly useful, but with integrated, precision analog circuitry and optimized firmware routines tailored to advanced microscopy. We show how the integration of waveform generation, multiplexed analog outputs, and native hardware triggers into a single central hub provides a versatile platform for performing fast circle-scanning acquisitions, including azimuthal scanning SAIM and multiangle TIRF. We also demonstrate how the low communication latency of our hardware platform can reduce image intensity and reconstruction artifacts arising from synchronization errors produced by software control. Our complete platform, including hardware design, firmware, API, and software, is available online for community-based development and collaboration.

     
    more » « less
  2. Abstract  
    more » « less
  3. Abstract

    Protein regions which are intrinsically disordered, exist as an ensemble of rapidly interconverting structures. Cooling proteins to cryogenic temperatures for dynamic nuclear polarization (DNP) magic angle spinning (MAS) NMR studies suspends most of the motions, resulting in peaks that are broad but not featureless. To demonstrate that detailed conformational restraints can be retrieved from the peak shapes of frozen proteins alone, we developed and used a simulation framework to assign peak features to conformers in the ensemble. We validated our simulations by comparing them to spectra of α‐synuclein acquired under different experimental conditions. Our assignments of peaks to discrete dihedral angle populations suggest that structural constraints are attainable under cryogenic conditions. The ability to infer ensemble populations from peak shapes has important implications for DNP MAS NMR studies of proteins with regions of disorder in living cells because chemical shifts are the most accessible measured parameter.

     
    more » « less
  4. Microglia are immune cells, which densely populate the central nervous system (CNS), and play essential role in suppression of neurodegenerative diseases, clearance of debris after CNS trauma, as well as serve as the last line of immune defense in response to any potential threat by being activated to eliminate diverse pathogens ranging from bacteria to cancer. The activated microglia cells are commonly used as a diagnostic biomarker of diverse brain conditions, however detection and classification of microglia activated phenotypes is a cumbersome and imprecise procedure. Here, we report on development of optical assay for detection and quantitative analysis of activated microglia. In this study, we investigated overall changes in the metabolism of microglia cells during their activation by monitoring the signal from cellular proteins and lipids using label‐free coherent anti‐Stokes Raman scattering imaging. Our data demonstrate that the activation of microglia in the presence of bacterial liposaccharide is accompanied by intense upregulation of synthesis of proteins and lipids. We further propose that elevated intracellular content of these types of macromolecules can serve as early supplementary marker for identification of active microglia cells in the brain samples by Raman imaging techniques.

     
    more » « less
  5. Abstract

    In in-sensor image preprocessing, the sensed image undergoes low level processing like denoising at the sensor end, similar to the retina of human eye. Optoelectronic synapse devices are potential contenders for this purpose, and subsequent applications in artificial neural networks (ANNs). The optoelectronic synapses can offer image pre-processing functionalities at the pixel itself—termed as in-pixel computing. Denoising is an important problem in image preprocessing and several approaches have been used to denoise the input images. While most of those approaches require external circuitry, others are efficient only when the noisy pixels have significantly lower intensity compared to the actual pattern pixels. In this work, we present the innate ability of an optoelectronic synapse array to perform denoising at the pixel itself once it is trained to memorize an image. The synapses consist of phototransistors with bilayer MoS2channel and p-Si/PtTe2buried gate electrode. Our 7 × 7 array shows excellent robustness to noise due to the interplay between long-term potentiation and short-term potentiation. This bio-inspired strategy enables denoising of noise with higher intensity than the memorized pattern, without the use of any external circuitry. Specifically, due to the ability of these synapses to respond distinctively to wavelengths from 300 nm in ultraviolet to 2 µm in infrared, the pixel array also denoises mixed-color interferences. The “self-denoising” capability of such an artificial visual array has the capacity to eliminate the need for raw data transmission and thus, reduce subsequent image processing steps for supervised learning.

     
    more » « less