skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting the preferred morphology of hexagonal boron nitride domain structure on nickel from ReaxFF-based molecular dynamics simulations
An understanding of the nucleation and growth of hexagonal boron nitride (hBN) on nickel substrates is essential to its development as a functional material. In particular, fundamental insights into the formation of the hexagonal lattices with alternating boron (B) and nitrogen (N) atoms could be exploited to control hBN lattice morphologies for targeted applications. In this study, the preferred shapes and edge configurations of atomically smooth hBN on Ni(111) were investigated using molecular dynamics (MD) simulations, along with reactive force field (ReaxFF) developed to represent the Ni/B/N system and the lattice-building B–N bond formation. The obtained hBN lattices, from different B : N feed ratios, are able to confirm that hBN domain geometries can indeed be tuned by varying thermodynamic parameters ( i.e. , chemical potentials of N and B) – a finding that has only been predicted using quantum mechanical theories. Here, we also showed that the nitrogen fed to the system plays a more crucial role in dictating the size of hBN lattices. With an increase of the relative N content, the simulated hBN domain shapes also transition from equilateral triangles to hexagons, again, consistent with the anticipation based on Density Functional Theory (DFT) calculations. Hence, a plausible approach to acquire a desired hBN nanostructure depends on careful control over the synthesis conditions, which now can benefit from reliable molecular simulations.  more » « less
Award ID(s):
1726332
PAR ID:
10106449
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
12
ISSN:
2040-3364
Page Range / eLocation ID:
5607 to 5616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While hexagonal boron nitride (hBN) has been widely used as a buffer or encapsulation layer for emerging electronic devices, interest in utilizing it for large‐area chemical barrier coating has somewhat faded. A chemical vapor deposition process is reported here for the conformal growth of hBN on large surfaces of various alloys and steels, regardless of their complex shapes. In contrast to the previously reported very limited protection by hBN against corrosion and oxidation, protection of steels against 10% HCl and oxidation resistance at 850 °C in air is demonstrated. Furthermore, an order of magnitude reduction in the friction coefficient of the hBN coated steels is shown. The growth mechanism is revealed in experiments on thin metal films, where the tunable growth of single‐crystal hBN with a selected number of layers is demonstrated. The key distinction of the process is the use of N2gas, which gets activated exclusively on the catalyst's surface and eliminates adverse gas‐phase reactions. This rate‐limiting step allowed independent control of activated nitrogen along with boron coming from a solid source (like elemental boron). Using abundant and benign precursors, this approach can be readily adopted for large‐scale hBN synthesis in applications where cost, production volume, and process safety are essential. 
    more » « less
  2. We report the growth of AlBN/β‐Nb2N nitride epitaxial heterostructures in which the AlBN is ferroelectric, and β‐Nb2N with metallic resistivity ≈40 μ at 300 K becomes superconducting belowTC ≈ 0.5 K. Using nitrogen plasma molecular beam epitaxy, we grow hexagonal β‐Nb2N films on c‐plane Al2O3substrates, followed by wurtzite AlBN. The AlBN is in epitaxial registry and rotationally aligned with the β‐Nb2N, and the hexagonal lattices of both nitride layers make angles of 30° with the hexagonal lattice of the Al2O3substrate. The B composition of the AlBN layer is varied from 0 to 14.7%. It is found to depend weakly on the B flux, but increases strongly with decreasing growth temperature, indicating a reaction rate‐controlled growth. The increase in B content causes a non‐monotonic change in the a‐lattice constant and a monotonic decrease in the c‐lattice constant of AlBN. Sharp, abrupt epitaxial AlBN/β‐Nb2N/Al2O3heterojunction interfaces and close symmetry matching are observed by transmission electron microscopy. The observation of ferroelectricity and superconductivity in epitaxial nitride heterostructures opens avenues for novel electronic and quantum devices. 
    more » « less
  3. Using hexagonal boron nitride (hBN) as a substrate for graphene has shown faster carrier cooling which makes it ideal for high‐power graphene‐based devices. However, the effect of using boron‐isotope‐enriched hBN has not been explored. Herein, femtosecond pump‐probe spectroscopy is utilized to measure and compare the time dynamics of photo‐excited carriers in graphene‐hBN heterostructures for hBN with the natural distribution of boron isotopes (20%10B and 80%11B) and hBN enriched to 100%10B and11B. The carriers cool down faster for systems with isotopically pure hBN substrates by a factor of ≈1.7 times. This difference in relaxation times arises from the interfacial coupling between carriers in graphene and the hBN phonon modes. The results show that the boron isotopic purity of the hBN substrate can help to reduce the hot phonon bottleneck that limits the cooling in graphene devices. 
    more » « less
  4. Abstract Monolayer hexagonal boron nitride (hBN) has been widely considered a fundamental building block for 2D heterostructures and devices. However, the controlled and scalable synthesis of hBN and its 2D heterostructures has remained a daunting challenge. Here, an hBN/graphene (hBN/G) interface‐mediated growth process for the controlled synthesis of high‐quality monolayer hBN is proposed and further demonstrated. It is discovered that the in‐plane hBN/G interface can be precisely controlled, enabling the scalable epitaxy of unidirectional monolayer hBN on graphene, which exhibits a uniform moiré superlattice consistent with single‐domain hBN, aligned to the underlying graphene lattice. Furthermore, it is identified that the deep‐ultraviolet emission at 6.12 eV stems from the 1s‐exciton state of monolayer hBN with a giant renormalized direct bandgap on graphene. This work provides a viable path for the controlled synthesis of ultraclean, wafer‐scale, atomically ordered 2D quantum materials, as well as the fabrication of 2D quantum electronic and optoelectronic devices. 
    more » « less
  5. Hexagonal boron nitride (hBN) has been grown on sapphire substrates by ultrahigh-temperature molecular beam epitaxy (MBE). A wide range of substrate temperatures and boron fluxes have been explored, revealing that high crystalline quality hBN layers are grown at high substrate temperatures, >1600℃ , and low boron fluxes, ∼1 × 10%& Torr beam equivalent pressure. In situ reflection high-energy electron diffraction revealed the growth of hBN layers with 60° rotational symmetry and the [112+ 0] axis of hBN parallel to the [11+ 00] axis of the sapphire substrate. Unlike the rough, polycrystalline films previously reported, atomic force microscopy and transmission electron microscopy characterization of these films demonstrate smooth, layered, few-nanometer hBN films on a nitridated sapphire substrate. This demonstration of high-quality hBN growth by MBE is a step toward its integration into existing epitaxial growth platforms, applications, and technologies. 
    more » « less