skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The capricious nature of iodine catenation in I 2 excess, perovskite-derived hybrid Pt( iv ) compounds
Perovskite-derived hybrid platinum iodides with the general formula A 2 Pt IV I 6 (A = formamidinium FA and guanidinium GUA) accommodate excess I 2 to yield hydrogen-bond-stabilized compounds where the I 2 forms catenates with I − anions on the PtI 6 octahedra.  more » « less
Award ID(s):
1725797
NSF-PAR ID:
10106470
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
55
Issue:
5
ISSN:
1359-7345
Page Range / eLocation ID:
588 to 591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of Ag( i ) and Cu( i ) complexes [Ag 3 (L 1 ) 2 ][PF 6 ] 3 ( 8 ), [Ag 3 (L 2 ) 2 ][PF 6 ] 3 ( 9 ), [Cu(L 1 )][PF 6 ] ( 10 ) and [Cu(L 2 )][PF 6 ] ( 11 ) have been synthesized by reactions of the tridentate amine-bis(N-heterocyclic carbene) ligand precursors [H 2 L 1 ][PF 6 ] 2 ( 6 ) and [H 2 L 2 ][PF 6 ] 2 ( 7 ) with Ag 2 O and Cu 2 O, respectively. Complexes 10 and 11 can also be obtained by transmetalation of 8 and 9 , respectively, with 3.0 equiv. of CuCl. A heterometallic Cu/Ag–NHC complex [Cu 2 Ag(L 1 ) 2 (CH 3 CN) 2 ][PF 6 ] 3 ( 12 ) is formed by the reaction of 8 with 2.0 equiv. of CuCl. All complexes have been characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffraction studies. The luminescence properties of 10–12 in solution and the solid state have been studied. At room temperature, 10–12 exhibit evident luminescence in solution and the solid state. The emission wavelengths are found to be identical at 483 nm in CH 3 CN, but they are 484, 480 and 592 nm in the solid state for 10–12 , respectively. These results suggest that 12 dissociates into two molecules of 10 and Ag( i ) ions in solution. Complex 12 is the first luminescent heterometallic Cu/Ag–NHC complex. 
    more » « less
  2. Four macrocyclic hybrid salts with different numbers of benzimidazolium and amine units, [H 2 L][PF 6 ] 2 (L = L 1 , L 2 , L 3 ) and [H 4 L 4 ][PF 6 ] 4 , have been employed as the heterocyclic carbene (NHC) precursors toward new Ag( i )– and Au( i )–NHC complexes. Three trinuclear and one tetranuclear Ag( i ) complexes 1–4 have been obtained from the reactions of the NHC precursors and Ag 2 O in acetonitrile. Four dinuclear Au( i )–NHC complexes 5–8 have been prepared by reacting the NHC precursors and AuCl(SMe 2 ) in the presence of NaOAc in DMF. The molecular structures of all the complexes are established by single-crystal X-ray diffraction studies. The metal ions in the Ag( i ) complexes 1–3 and the Au( i ) complexes 5–7 are coordinated with two macrocyclic NHC ligands to form a sandwiched structure. In contrast, a trinuclear Ag 3 core is located in the cavity of one macrocyclic ligand in [Ag 3 (L 4 )][PF 6 ] 3 ( 4 ). The photoluminescence properties of Au( i ) complexes 5–8 have also been investigated. 
    more » « less
  3. null (Ed.)
    A series of new Ce( iv ) based fluorides with two different compositions, Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) and Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) were synthesized as high quality single crystals via a mild hydrothermal route. The compounds with the composition Cs 2 MCe 3 F 16 (M = Ni 2+ , Co 2+ , Mn 2+ , and Zn 2+ ) crystallize in the hexagonal crystal system with space group P 6 3 / mmc and are isotypic with the uranium analogs, whereas the Na 3 MCe 6 F 30 (M = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) compounds crystallize in the trigonal space group P 3̄ c 1 and are isotypic with the uranium and thorium analogs Na x MM′ 6 F 30 (M′ = Th, U). The Cs 2 MCe 3 F 16 compounds exhibit a complex 3D crystal structure constructed of edge-sharing cerium trimers, in which all three Ce atoms share a common μ 3 -F unit. The Na 3 MCe 6 F 30 compounds are constructed of edge- and vertex-sharing cerium polyhedra connected to each other to form Ce 6 F 30 6− framework, which can accommodate only relatively smaller trivalent cations (M 3+ = Al 3+ , Ga 3+ , Fe 3+ , and Cr 3+ ) as compared to uranium and thorium analogs. Magnetic susceptibility measurements were carried out on the samples of Cs 2 MCe 3 F 16 (M = Ni 2+ and Co 2+ ), which exhibit paramagnetic behavior. 
    more » « less
  4. null (Ed.)
    We report the hydrothermal syntheses and crystal structures of aquabis(2,2′-bipyridine-κ 2 N , N ′)copper(II) hexafluoridosilicate tetrahydrate, [Cu(bpy) 2 (H 2 O)][SiF 6 ]·4H 2 O (bpy is 2,2′-bipyridine, C 10 H 8 N 2 ), (I), bis(2,2′-bipyridine-3κ 2 N , N ′)-di-μ-fluorido-1:3κ 2 F : F ;2:3κ 2 F : F -decafluorido-1κ 5 F ,2κ 5 F -ditantalum(V)copper(II), [Cu(bpy) 2 (TaF 6 ) 2 ], (II), tris(2,2′-bipyridine-κ 2 N , N ′)copper(II) bis[hexafluoridotantalate(V)], [Cu(bpy) 3 ][TaF 6 ] 2 , (III), and catena -poly[[diaqua(2,2′-bipyridine-κ 2 N , N ′)copper(II)]-μ-fluorido-tetrafluoridotin-μ-fluorido], [Cu(bpy)(H 2 O) 2 SnF 6 ] n , (IV). Compounds (I), (II) and (III) contain locally chiral copper coordination complexes with C 2 , D 2 , and D 3 symmetry, respectively. The extended structures of (I) and (IV) are consolidated by O—H...F and O—H...O hydrogen bonds. The structure of (III) was found to be a merohedral (racemic) twin. 
    more » « less
  5. Abstract

    New light is shed on the previously known perovskite material, Cs2Au2I6, as a potential active material for high‐efficiency thin‐film Pb‐free photovoltaic cells. First‐principles calculations demonstrate that Cs2Au2I6has an optimal band gap that is close to the Shockley–Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs2Au2I6a double‐perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs2Au2I6has a direct‐band‐gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state‐of‐the‐art multiscale simulations connecting from the material to the device, strongly suggests that Cs2Au2I6will serve as the active material in highly efficient, nontoxic, and thin‐film perovskite solar cells in the very near future.

     
    more » « less