skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reduced-complexity Deep Neural Network-aided Channel Code Decoder: A Case Study for BCH Decoder
Award ID(s):
1854742 1854737
PAR ID:
10106591
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
1468 to 1472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Perception, in theoretical neuroscience, has been modeled as the encoding of external stimuli into internal signals, which are then decoded. The Bayesian mean is an important decoder, as it is optimal for purposes of both estimation and discrimination. We present widely-applicable approximations to the bias and to the variance of the Bayesian mean, obtained under the minimal and biologically-relevant assumption that the encoding results from a series of independent, though not necessarily identically-distributed, signals. Simulations substantiate the accuracy of our approximations in the small-noise regime. The bias of the Bayesian mean comprises two components: one driven by the prior, and one driven by the precision of the encoding. If the encoding is 'efficient', the two components have opposite effects; their relative strengths are determined by the objective that the encoding optimizes. The experimental literature on perception reports both 'Bayesian' biases directed towards prior expectations, and opposite, 'anti-Bayesian' biases. We show that different tasks are indeed predicted to yield such contradictory biases, under a consistently-optimal encoding-decoding model. Moreover, we recover Wei and Stocker's "law of human perception" [1], a relation between the bias of the Bayesian mean and the derivative of its variance, and show how the coefficient of proportionality in this law depends on the task at hand. Our results provide a parsimonious theory of optimal perception under constraints, in which encoding and decoding are adapted both to the prior and to the task faced by the observer. 
    more » « less