skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Patterns of Effort Contribution and Demand and User Classification based on Participation Patterns in NPM Ecosystem
Background: Open source requires participation of volunteer and commercial developers (users) in order to deliver functional high-quality components. Developers both contribute effort in the form of patches and demand effort from the component maintainers to resolve issues reported against it. Open source components depend on each other directly and transitively, and evidence suggests that more effort is required for reporting and resolving the issues reported further upstream in this supply chain. Aim: Identify and characterize patterns of effort contribution and demand throughout the open source supply chain and investigate if and how these patterns vary with developer activity; identify different groups of developers; and predict developers' company affiliation based on their participation patterns. Method: 1,376,946 issues and pull-requests created for 4433 NPM packages with over 10,000 monthly downloads and full (public) commit activity data of the 272,142 issue creators is obtained and analyzed and dependencies on NPM packages are identified. Fuzzy c-means clustering algorithm is used to find the groups among the users based on their effort contribution and demand patterns, and Random Forest is used as the predictive modeling technique to identify their company affiliations. Result: Users contribute and demand effort primarily from packages that they depend on directly with only a tiny fraction of contributions and demand going to transitive dependencies. A significant portion of demand goes into packages outside the users' respective supply chains (constructed based on publicly visible version control data). Three and two different groups of users are observed based on the effort demand and effort contribution patterns respectively. The Random Forest model used for identifying the company affiliation of the users gives a AUC-ROC value of 0.68, and variables representing aggregate participation patterns proved to be the important predictors. Conclusion: Our results give new insights into effort demand and supply at different parts of the supply chain of the NPM ecosystem and its users and suggests the need to increase visibility further upstream.  more » « less
Award ID(s):
1633437
PAR ID:
10106640
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
In Proceedings of the 15th International Conference on Predictive Models and Data Analytics in Software Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Open source requires participation of volunteer and commercial developers (users) in order to deliver functional high-quality components. Developers both contribute effort in the form of patches and demand effort from the component maintainers to resolve issues reported against it. Open source components depend on each other directly and transitively, and evidence suggests that more effort is required for reporting and resolving the issues reported further upstream in this supply chain. Aim: Identify and characterize patterns of effort contribution and demand throughout the open source supply chain and investigate if and how these patterns vary with developer activity; identify different groups of developers; and predict developers' company affiliation based on their participation patterns. Method: 1,376,946 issues and pull-requests created for 4433 NPM packages with over 10,000 monthly downloads and full (public) commit activity data of the 272,142 issue creators is obtained and analyzed and dependencies on NPM packages are identified. Fuzzy c-means clustering algorithm is used to find the groups among the users based on their effort contribution and demand patterns, and Random Forest is used as the predictive modeling technique to identify their company affiliations. Result: Users contribute and demand effort primarily from packages that they depend on directly with only a tiny fraction of contributions and demand going to transitive dependencies. A significant portion of demand goes into packages outside the users' respective supply chains (constructed based on publicly visible version control data). Three and two different groups of users are observed based on the effort demand and effort contribution patterns respectively. The Random Forest model used for identifying the company affiliation of the users gives a AUC-ROC value of 0.68, and variables representing aggregate participation patterns proved to be the important predictors. Conclusion: Our results give new insights into effort demand and supply at different parts of the supply chain of the NPM ecosystem and its users and suggests the need to increase visibility further 
    more » « less
  2. Background: As software development becomes more interdependent, unique relationships among software packages arise and form complex software ecosystems. Aim: We aim to understand the behavior of these ecosystems better through the lens of software supply chains and model how the effects of software dependency network affect the change in downloads of Javascript packages. Method: We analyzed 12,999 popular packages in NPM, between 01-December-2017 and 15-March-2018, using Linear Regression and Random Forest models and examined the effects of predictors representing different aspects of the software dependency supply chain on changes in numbers of downloads for a package. Result: Preliminary results suggest that the count and downloads of upstream and downstream runtime dependencies have a strong effect on the change in downloads, with packages having fewer, more popular packages as dependencies (upstream or downstream) likely to see an increase in downloads. This suggests that in order to interpret the number of downloads for a package properly, it is necessary to take into account the peculiarities of the supply chain (both upstream and downstream) of that package. Conclusion: Future work is needed to identify the effects of added, deleted, and unchanged dependencies for different types of packages, e.g. build tools, test tools. 
    more » « less
  3. The NPM package repository contains over two million packages and serves tens of billions of downloads per-week. Nearly every single JavaScript application uses the NPM package manager to install packages from the NPM repository. NPM relies on a “semantic versioning” (‘semver’) scheme to maintain a healthy ecosystem, where bug-fixes are reliably delivered to downstream packages as quickly as possible, while breaking changes require manual intervention by downstream package maintainers. In order to understand how developers use semver, we build a dataset containing every version of every package on NPM and analyze the flow of updates throughout the ecosystem. We build a time-travelling dependency resolver for NPM, which allows us to determine precisely which versions of each dependency would have been resolved at different times. We segment our analysis to allow for a direct analysis of security-relevant updates (those that introduce or patch vulnerabilities) in comparison to the rest of the ecosystem. We find that when developers use semver correctly, critical updates such as security patches can flow quite rapidly to downstream dependencies in the majority of cases (90.09%), but this does not always occur, due to developers’ imperfect use of both semver version constraints and semver version number increments. Our findings have implications for developers and researchers alike. We make our infrastructure and dataset publicly available under an open source license. 
    more » « less
  4. The prevalent use of third-party components in modern software development, coupled with rapid modernization and digitization, has significantly amplified the risk of software supply chain security attacks. Popular large registries like npm and PyPI are highly targeted malware distribution channels for attackers due to heavy growth and dependence on third-party components. Industry and academia are working towards building tools to detect malware in the software supply chain. However, a lack of benchmark datasets containing both malware and neutral packages hampers the evaluation of the performance of these malware detection tools. The goal of our study is to aid researchers and tool developers in evaluating and improving malware detection tools by contributing a benchmark dataset built by systematically collecting malicious and neutral packages from the npm and PyPI ecosystems. We present MalwareBench, a labeled dataset of 20,534 packages (of which 6,475 are malicious) of npm and PyPI ecosystems. We constructed the benchmark dataset by incorporating pre-existing malware datasets with the Socket internal benchmark data and including popular and newly released npm and PyPI packages. The ground truth labels of these packages were determined using the Socket AI Scanner and manual inspection. 
    more » « less
  5. and often fails to installs the newest versions of dependencies; 2) NPM’s algorithm leads to duplicated dependencies and bloated code, which is particularly bad for web applications that need to minimize code size; 3) NPM’s vulnerability fixing algorithm is also greedy, and can even introduce new vulnerabilities; and 4) NPM’s ability to duplicate dependencies can break stateful frameworks and requires a lot of care to workaround. Although existing tools try to address these problems they are either brittle, rely on post hoc changes to the dependency tree, do not guarantee optimality, and are not composable. We present PacSolve, a unifying framework and implementation for dependency solving which allows for customizable constraints and optimization goals. We use PacSolve to build MaxNPM, a complete, drop-in replacement for NPM, which empowers developers to combine multiple objectives when installing dependencies. We evaluate MaxNPM with a large sample of packages from the NPM ecosystem and show that it can: 1) reduce more vulnerabilities in dependencies than NPM’s auditing tool in 33% cases; 2) chooses newer dependencies than NPM in 14% cases; and 3) chooses fewer dependencies than NPM in 21% cases. All our code and data is open and available. 
    more » « less