skip to main content


Title: Hyperspectral imaging microscopy for measurement of localized second messenger signals in single cells
Ca2+ and cAMP are ubiquitous second messengers known to differentially regulate a variety of cellular functions over a wide range of timescales. Studies from a variety of groups support the hypothesis that these signals can be localized to discrete locations within cells, and that this subcellular localization is a critical component of signaling specificity. However, to date, it has been difficult to track second messenger signals at multiple locations within a single cell. This difficulty is largely due to the inability to measure multiplexed florescence signals in real time. To overcome this limitation, we have utilized both emission scan- and excitation scan-based hyperspectral imaging approaches to track second messenger signals as well as labeled cellular structures and/or proteins in the same cell. We have previously reported that hyperspectral imaging techniques improve the signal-to-noise ratios of both fluorescence and FRET measurements, and are thus well suited for the measurement of localized second messenger signals. Using these approaches, we have measured near plasma membrane and near nuclear membrane cAMP signals, as well as distributed signals within the cytosol, in several cell types including airway smooth muscle, pulmonary endothelial, and HEK-293 cells. We have also measured cAMP and Ca2+ signals near autofluorescent structures that appear to be golgi. Our data demonstrate that hyperspectral imaging approaches provide unique insight into the spatial and kinetic distributions of cAMP and Ca2+ signals in single cells.  more » « less
Award ID(s):
1725937
NSF-PAR ID:
10106738
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proc. SPIE 10881, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVII, 108811F
Volume:
10881
Page Range / eLocation ID:
50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the past two decades, spectral imaging technologies have expanded the capacity of fluorescence microscopy for accurate detection of multiple labels, separation of labels from cellular and tissue autofluorescence, and analysis of autofluorescence signatures. These technologies have been implemented using a range of optical techniques, such as tunable filters, diffraction gratings, prisms, interferometry, and custom Bayer filters. Each of these techniques has associated strengths and weaknesses with regard to spectral resolution, spatial resolution, temporal resolution, and signal-to-noise characteristics. We have previously shown that spectral scanning of the fluorescence excitation spectrum can provide greatly increased signal strength compared to traditional emission-scanning approaches. Here, we present results from utilizing a Hyperspectral Imaging Fluorescence Excitation Scanning (HIFEX) microscope system for live cell imaging. Live cell signaling studies were performed using HEK 293 and rat pulmonary microvascular endothelial cells (PMVECs), transfected with either a cAMP FRET reporter or a Ca2+ reporter. Cells were further labeled to visualize subcellular structures (nuclei, membrane, mitochondria, etc.). Spectral images were acquired using a custom inverted microscope (TE2000, Nikon Instruments) equipped with a 300W Xe arc lamp and tunable excitation filter (VF- 5, Sutter Instrument Co., equipped with VersaChrome filters, Semrock), and run through MicroManager. Timelapse spectral images were acquired from 350-550 nm, in 5 nm increments. Spectral image data were linearly unmixed using custom MATLAB scripts. Results indicate that the HIFEX microscope system can acquire live cell image data at acquisition speeds of 8 ms/wavelength band with minimal photobleaching, sufficient for studying moderate speed cAMP and Ca2+ events. 
    more » « less
  2. Abstract

    As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.

     
    more » « less
  3. Förster resonance energy transfer (FRET) is a valuable tool for measuring molecular distances and the effects of biological processes such as cyclic nucleotide messenger signaling and protein localization. Most FRET techniques require two fluorescent proteins with overlapping excitation/emission spectral pairing to maximize detection sensitivity and FRET efficiency. FRET microscopy often utilizes differing peak intensities of the selected fluorophores measured through different optical filter sets to estimate the FRET index or efficiency. Microscopy platforms used to make these measurements include wide-field, laser scanning confocal, and fluorescence lifetime imaging. Each platform has associated advantages and disadvantages, such as speed, sensitivity, specificity, out-of-focus fluorescence, and Zresolution. In this study, we report comparisons among multiple microscopy and spectral filtering platforms such as standard 2-filter FRET, emission-scanning hyperspectral imaging, and excitation-scanning hyperspectral imaging. Samples of human embryonic kidney (HEK293) cells were grown on laminin-coated 28 mm round gridded glass coverslips (10816, Ibidi, Fitchburg, Wisconsin) and transfected with adenovirus encoding a cAMP-sensing FRET probe composed of a FRET donor (Turquoise) and acceptor (Venus). Additionally, 3 FRET “controls” with fixed linker lengths between Turquoise and Venus proteins were used for inter-platform validation. Grid locations were logged, recorded with light micrographs, and used to ensure that whole-cell FRET was compared on a cell-by-cell basis among the different microscopy platforms. FRET efficiencies were also calculated and compared for each method. Preliminary results indicate that hyperspectral methods increase the signal-to-noise ratio compared to a standard 2-filter approach. 
    more » « less
  4. Introduction— In response to external stress, cells alter their morphology, metabolic activity, and functions to mechanically adapt to the dynamic, local environment through cell allostasis. To explore mechanotransduction in cellular allostasis, we applied an integrated micromechanical system that combines an ‘ultrasound tweezers’-based mechanical stressor and a Förster resonance energy transfer (FRET)-based molecular force biosensor, termed “actinin-sstFRET,” to monitor in situ single-cell allostasis in response to transient stimulation in real time. Methods— The ultrasound tweezers utilize 1 Hz, 10-second transient ultrasound pulses to acoustically excite a lipid-encapsulated microbubble, which is bound to the cell membrane, and apply a pico- to nano-Newton range of forces to cells through an RGD-integrin linkage. The actinin-sstFRET molecular sensor, which engages the actin stress fibers in live cells, is used to map real-time actomyosin force dynamics over time. Then, the mechanosensitive behaviors were examined by profiling the dynamics in Ca2+ influx, actomyosin cytoskeleton (CSK) activity, and GTPase RhoA signaling to define a single-cell mechanical allostasis. Results—By subjecting a 1 Hz, 10-second physical stress, single vascular smooth muscle cells (VSMCs) were observed to remodeled themselves in a biphasic mechanical allostatic manner within 30 minutes that caused them to adjust their contractility and actomyosin activities. The cellular machinery that underscores the vital role of CSK equilibrium in cellular mechanical allostasis, includes Ca2+ influx, remodeling of actomyosin CSK and contraction, and GTPase RhoA signaling. Mechanical allostasis was observed to be compromised in VSMCs from patients with type II diabetes mellitus (T2DM), which could potentiate an allostatic maladaptation. Conclusions— By integrating tools that simultaneously permit localized mechanical perturbation and map actomyosin forces, we revealed distinct cellular mechanical allostasis profiles in our micromechanical system. Our findings of cell mechanical allostasis and maladaptation provide the potential for mechanophenotyping cells to reveal their pathogenic contexts and their biophysical mediators that underlie multi-etiological diseases such as diabetes, hypertension, or aging. 
    more » « less
  5. Identifying the mechanisms by which bacterial pathogens kill host cells is fundamental to understanding how to control and prevent human and animal disease. In the case of Bacillus thuringiensis (Bt), such knowledge is critical to using the bacterium to kill insect vectors that transmit human and animal disease. For the Cry4B toxin produced by Bt, its capacity to kill Anopheles gambiae, the primary mosquito vector of malaria, is the consequence of a variety of signaling activities. We show here that Cry4B, acting as first messenger, binds specifically to the bitopic cadherin BT-R3G-protein-coupled receptor (GPCR) localized in the midgut of A. gambiae, activating the downstream second messenger cyclic adenosine monophosphate (cAMP). The direct result of the Cry4B–BT-R3binding is the release of αsfrom the heterotrimeric αβγ-G-protein complex and its activation of adenylyl cyclase (AC). The upshot is an increased level of cAMP, which activates protein kinase A (PKA). The functional impact of cAMP–PKA signaling is the stimulation of Na+/K+-ATPase (NKA) which serves as an Na+/K+pump to maintain proper gradients of extracellular Na+and intracellular K+. Increased level of cAMP amplifies NKA and upsets normal ion concentration gradients. NKA, as a scaffolding protein, accelerates the first messenger signal to the nucleus, generating additional BT-R3molecules and promoting their exocytotic trafficking to the cell membrane. Accumulation of BT-R3on the cell surface facilitates recruitment of additional toxin molecules which, in turn, amplify the original signal in a cascade-like manner. This report provides the first evidence of a bacterial toxin using NKA via AC/PKA signaling to execute cell death.

     
    more » « less