Abstract Natural products have found important applications in the pharmaceutical and agricultural sectors. In bacteria, the genes that encode the biosynthesis of natural products are often colocalized in the genome, forming biosynthetic gene clusters. It has been predicted that only 3% of natural products encoded in bacterial genomes have been discovered thus far, in part because gene clusters may be poorly expressed under laboratory conditions. Heterologous expression can help convert bioinformatics predictions into products. However, challenges remain, such as gene cluster prioritization, cloning of the complete gene cluster, high level expression, product identification, and isolation of products in practical yields. Here we reviewed the literature from the past 5 years (January 2018 to June 2023) to identify studies that discovered natural products by heterologous expression. From the 50 studies identified, we present analyses of the rationale for gene cluster prioritization, cloning methods, biosynthetic class, source taxa, and host choice. Combined, the 50 studies led to the discovery of 63 new families of natural products, supporting heterologous expression as a promising way to access novel chemistry. However, the success rate of natural product detection varied from 11% to 32% based on four large-scale studies that were part of the reviewed literature. The low success rate makes it apparent that much remains to be improved. The potential reasons for failure and points to be considered to improve the chances of success are discussed. One-Sentence SummaryAt least 63 new families of bacterial natural products were discovered using heterologous expression in the last 5 years, supporting heterologous expression as a promising way to access novel chemistry; however, the success rate is low (11–32%) making it apparent that much remains to be improved—we discuss the potential reasons for failure and points to be considered to improve the chances of success. BioRender was used to generate the graphical abstract figure.
more »
« less
Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts
Bacteria have historically been a rich source of natural products ( e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
more »
« less
- Award ID(s):
- 1716594
- PAR ID:
- 10106785
- Date Published:
- Journal Name:
- MedChemComm
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2040-2503
- Page Range / eLocation ID:
- 668 to 681
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups 1 , this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds 2,3 . However, studying this diversity to identify genomic pathways for the synthesis of such compounds 4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters (‘ Candidatus Eudoremicrobiaceae’) that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.more » « less
-
The emergence of multiple antibiotic resistant bacteria has pushed the available pool of antibiotics to the brink. Bacterial secondary metabolites have long been a valuable resource in the development of antibiotics, and the genus Burkholderia has recently emerged as a source of novel compounds with antibacterial, antifungal, and anti-cancer activities. Genome mining has contributed to the identification of biosynthetic gene clusters, which encode enzymes that are responsible for synthesis of such secondary metabolites. Unfortunately, these large gene clusters generally remain silent or cryptic under normal laboratory settings, which creates a hurdle in identification and isolation of these compounds. Various strategies, such as changes in growth conditions and antibiotic stress, have been applied to elicit the expression of these cryptic gene clusters. Although a number of compounds have been isolated from different Burkholderia species, the mechanisms by which the corresponding gene clusters are regulated remain poorly understood. This review summarizes the activity of well characterized secondary metabolites from Burkholderia species and the role of local regulators in their synthesis, and it highlights recent evidence for the role of global regulators in controlling production of secondary metabolites. We suggest that targeting global regulators holds great promise for the awakening of cryptic gene clusters and for developing better strategies for discovery of novel antibiotics.more » « less
-
Microbial natural products are a major source of bioactive compounds for drug discovery. Among these molecules, nonribosomal peptides (NRPs) represent a diverse class of natural products that include antibiotics, immunosuppressants, and anticancer agents. Recent breakthroughs in natural product discovery have revealed the chemical structure of several thousand NRPs. However, biosynthetic gene clusters (BGCs) encoding them are known only for a few hundred compounds. Here, we developed Nerpa, a computational method for the high-throughput discovery of novel BGCs responsible for producing known NRPs. After searching 13,399 representative bacterial genomes from the RefSeq repository against 8368 known NRPs, Nerpa linked 117 BGCs to their products. We further experimentally validated the predicted BGC of ngercheumicin from Photobacterium galatheae via mass spectrometry. Nerpa supports searching new genomes against thousands of known NRP structures, and novel molecular structures against tens of thousands of bacterial genomes. The availability of these tools can enhance our understanding of NRP synthesis and the function of their biosynthetic enzymes.more » « less
-
Plant natural products (PNPs) play important roles in plant physiology and have been applied across diverse fields of human society. Understanding their biosynthetic pathways informs plant evolution and meanwhile enables sustainable production through metabolic engineering. However, the discovery of PNP biosynthetic pathways remains challenging due to the diversity of enzymes involved and limitations in traditional gene mining approaches. In this review, we will summarize state-of-the-art strategies and recent examples for predicting and characterizing PNP biosynthetic pathways, respectively, with multiomics-guided tools and heterologous host systems and share our perspectives on the systematic pipelines integrating these various bioinformatic and biochemical approaches.more » « less