Bacteria have historically been a rich source of natural products ( e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
more »
« less
Bacterial natural product discovery by heterologous expression
Abstract Natural products have found important applications in the pharmaceutical and agricultural sectors. In bacteria, the genes that encode the biosynthesis of natural products are often colocalized in the genome, forming biosynthetic gene clusters. It has been predicted that only 3% of natural products encoded in bacterial genomes have been discovered thus far, in part because gene clusters may be poorly expressed under laboratory conditions. Heterologous expression can help convert bioinformatics predictions into products. However, challenges remain, such as gene cluster prioritization, cloning of the complete gene cluster, high level expression, product identification, and isolation of products in practical yields. Here we reviewed the literature from the past 5 years (January 2018 to June 2023) to identify studies that discovered natural products by heterologous expression. From the 50 studies identified, we present analyses of the rationale for gene cluster prioritization, cloning methods, biosynthetic class, source taxa, and host choice. Combined, the 50 studies led to the discovery of 63 new families of natural products, supporting heterologous expression as a promising way to access novel chemistry. However, the success rate of natural product detection varied from 11% to 32% based on four large-scale studies that were part of the reviewed literature. The low success rate makes it apparent that much remains to be improved. The potential reasons for failure and points to be considered to improve the chances of success are discussed. One-Sentence SummaryAt least 63 new families of bacterial natural products were discovered using heterologous expression in the last 5 years, supporting heterologous expression as a promising way to access novel chemistry; however, the success rate is low (11–32%) making it apparent that much remains to be improved—we discuss the potential reasons for failure and points to be considered to improve the chances of success. BioRender was used to generate the graphical abstract figure.
more »
« less
- Award ID(s):
- 2237551
- PAR ID:
- 10480445
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Industrial Microbiology and Biotechnology
- Volume:
- 50
- Issue:
- 1
- ISSN:
- 1367-5435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
High-copy-number plasmids are indispensable tools for gene overexpression studies in prokaryotes to engineer pathways or probe phenotypes of interest. The development of genetic tools for the industrially relevant Actinobacteria is of special interest, given their utility in producing keratolytic enzymes and biologically active natural products. Within the Actinobacteria, Streptomyces–Escherichia coli shuttle vectors based on the SCP2* and pIJ101 incompatibility groups are widely employed for molecular cloning and gene expression studies. Here, the sequences of two commonly used pIJ101-based Streptomyces–E. coli shuttle vectors, pEM4 and pUWL201, were determined using next-generation sequencing. These plasmids drive the expression of heterologous genes using the constitutive ermE*p promoter. pEM4 was found to be 8.3 kbp long, containing a β-lactamase gene, thiostrepton resistance marker, the lacZɑ fragment, a ColE1 origin of replication and the Streptomyces pIJ101 origin of replication. pUWL201 was found to be 6.78 kbp long, containing a β-lactamase gene, thiostrepton resistance marker, the lacZɑ fragment, a ColE1 origin of replication and the Streptomyces pIJ101 origin of replication. Interestingly, the sequences for both pEM4 and pUWL201 exceed their previously reported size by 1.1 and 0.4 kbp, respectively. This report updates the literature with the corrected sequences for these shuttle vectors, ensuring their compatibility with modern synthetic biology cloning methodologies.more » « less
-
Abstract Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α‐diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster fromGlycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of theazagene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)‐producing enzymes, implicating HYAA in α‐diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2‐electron oxidation of a hydrazonoacetyl intermediate is required for α‐diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α‐diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene‐mediated biosynthetic transformations in vivo.more » « less
-
Reguera, Gemma (Ed.)ABSTRACT Polycyclic tetramate macrolactams (PTMs) are bioactive natural products commonly associated with certain actinobacterial and proteobacterial lineages. These molecules have been the subject of numerous structure-activity investigations since the 1970s. New members continue to be pursued in wild and engineered bacterial strains, and advances in PTM biosynthesis suggest their outwardly simplistic biosynthetic gene clusters (BGCs) belie unexpected product complexity. To address the origins of this complexity and understand its influence on PTM discovery, we engaged in a combination of bioinformatics to systematically classify PTM BGCs and PTM-targeted metabolomics to compare the products of select BGC types. By comparing groups of producers and BGC mutants, we exposed knowledge gaps that complicate bioinformatics-driven product predictions. In sum, we provide new insights into the evolution of PTM BGCs while systematically accounting for the PTMs discovered thus far. The combined computational and metabologenomic findings presented here should prove useful for guiding future discovery.<bold>IMPORTANCE</bold>Polycyclic tetramate macrolactam (PTM) pathways are frequently found within the genomes of biotechnologically important bacteria, includingStreptomycesandLysobacterspp.Their molecular products are typically bioactive, having substantial agricultural and therapeutic interest. Leveraging bacterial genomics for the discovery of new related molecules is thus desirable, but drawing accurate structural predictions from bioinformatics alone remains challenging. This difficulty stems from a combination of previously underappreciated biosynthetic complexity and remaining knowledge gaps, compounded by a stream of yet-uncharacterized PTM biosynthetic loci gleaned from recently sequenced bacterial genomes. We engaged in the following study to create a useful framework for cataloging historic PTM clusters, identifying new cluster variations, and tracing evolutionary paths for these molecules. Our data suggest new PTM chemistry remains discoverable in nature. However, our metabolomic and mutational analyses emphasize the practical limitations of genomics-based discovery by exposing hidden complexity.more » « less
-
Plant natural products (PNPs) play important roles in plant physiology and have been applied across diverse fields of human society. Understanding their biosynthetic pathways informs plant evolution and meanwhile enables sustainable production through metabolic engineering. However, the discovery of PNP biosynthetic pathways remains challenging due to the diversity of enzymes involved and limitations in traditional gene mining approaches. In this review, we will summarize state-of-the-art strategies and recent examples for predicting and characterizing PNP biosynthetic pathways, respectively, with multiomics-guided tools and heterologous host systems and share our perspectives on the systematic pipelines integrating these various bioinformatic and biochemical approaches.more » « less
An official website of the United States government
