Abstract Traits of the spore‐bearing generation have historically provided the basis for systematic concepts across the phylogenetic spectrum and depth of mosses. Whether taxa characterized by a simple sporophytic architecture are closely related or emerged from independent reduction is often ambiguous. Phylogenomic inferences in the Funariaceae, which hold the model taxonPhyscomitrium patens, revealed that several such shifts in sporophyte complexity occurred, and mostly within theEntosthodon‐Physcomitriumcomplex. Here, we report the rediscovery of the monospecific, Himalayan endemic generaBrachymeniopsisandClavitheca, after nearly 100 years and 40 years since their respective descriptions. The genera are characterized by, among other traits, their short sporophytes lacking the sporangial peristome teeth controlling spore dispersal. Phylogenomic inferences reveal thatBrachymeniopsis gymnostomaarose within the clade ofEntosthodons.str., a genus with typically long‐exserted capsules. We therefore propose to transferB. gymnostomato the genusEntosthodon, asE. gymnostomuscomb. nov.Furthermore,Clavitheca poeltii, the sole species of the genus, is morphologically highly similar toE. gymnostomus, and should also be transferred toEntosthodon, but is retained as a distinct taxon,E. poeltiicomb. nov., until additional populations allow for testing the robustness of the observed divergence in costa and seta length between the Nepalese and Chinese populations.
more »
« less
Phylogenomic delineation of Physcomitrium (Bryophyta: Funariaceae) based on targeted sequencing of nuclear exons and their flanking regions rejects the retention of Physcomitrella , Physcomitridium and Aphanorrhegma
Abstract Selection on spore dispersal mechanisms in mosses is thought to shape the transformation of the sporophyte. The majority of extant mosses develop a sporangium that dehisces through the loss of an operculum, and regulates spore release through the movement of articulate teeth, the peristome, lining the capsule mouth. Such complexity was acquired by the Mesozoic Era, but was lost in some groups during subsequent diversification events, challenging the resolution of the affinities for taxa with reduced architectures. The Funariaceae are a cosmopolitan and diverse lineage of mostly annual mosses, and exhibit variable sporophyte complexities, spanning from long, exerted, operculate capsules with two rings of well‐developed teeth, to capsules immersed among maternal leaves, lacking a differentiated line of dehiscence (i.e., inoperculate) and without peristomes. The family underwent a rapid diversification, and the relationships of taxa with reduced sporophytes remain ambiguous. Here, we infer the relationships of five taxa with highly reduced sporophytes based on 648 nuclear loci (exons complemented by their flanking regions), based on inferences from concatenated data and concordance analysis of single gene trees.Physcomitrellopsisis resolved as nested within one clade ofEntosthodon.Physcomitrellas. l., is resolved as a polyphyletic assemblage and, along with its putative relativeAphanorrhegma, nested withinPhyscomitrium. We propose a new monophyletic delineation ofPhyscomitrium, which accommodates species ofPhyscomitrellaandAphanorrhegma. The monophyly ofPhyscomitriums. l. is supported by a small plurality of exons, but a majority of trees inferred from exons and their adjacent non‐coding regions.
more »
« less
- PAR ID:
- 10106933
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Systematics and Evolution
- Volume:
- 57
- Issue:
- 4
- ISSN:
- 1674-4918
- Page Range / eLocation ID:
- p. 404-417
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The study of moss calyptra form and function began almost 250 years ago, but calyptra research has remained a niche endeavor focusing on only a small number of species. Recent advances have focused on calyptra cuticular waxes, which function in dehydration protection of the immature sporophyte apex. The physical presence of the calyptra also plays a role in sporophyte development, potentially via its influence on auxin transport. Progress developing genomic resources for mosses beyond the model Physcomitrium patens, specifically for species with larger calyptrae and taller sporophytes, in combination with advances in CRISPR-Cas9 genome editing will enable the influence of the calyptra on gene expression and the production of RNAs and proteins that coordinate sporophyte development to be explored.more » « less
-
The sporophytes of moss plants are dependent on the gametophytes for both photosynthesis and water, which makes conducting cells (hydroids and leptoids) an important part of the sporophyte anatomy. A previous study found that Physcomitrium pyriforme, which has shorter sporophytes, had higher rates of water transport than Funaria hygrometrica, which has taller sporophytes. The aim of this study is to test for differences in the conducting cell anatomy between these two moss species, which could be responsible for differences in water transport rates. We used histology methods to fix, embed, and section sporophyte seta and then quantified the numbers and sizes of the conducting cells. The results revealed that leptoids comprise a higher proportion of the conducting cell area in P. pyriforme, while hydroids comprise more of the conducting cell area in F. hygrometrica. These results point toward the leptoids playing a role in water transport in the moss sporophyte.more » « less
-
Abstract PremiseTo date, phylogenetic relationships within the monogeneric Brunelliaceae have been based on morphological evidence, which does not provide sufficient phylogenetic resolution. Here we use target‐enriched nuclear data to improve our understanding of phylogenetic relationships in the family. MethodsWe used the Angiosperms353 toolkit for targeted recovery of exonic regions and supercontigs (exons + introns) from low copy nuclear genes from 53 of 70 species inBrunellia, and several outgroup taxa. We removed loci that indicated biased inference of relationships and applied concatenated and coalescent methods to inferBrunelliaphylogeny. We identified conflicts among gene trees that may reflect hybridization or incomplete lineage sorting events and assessed their impact on phylogenetic inference. Finally, we performed ancestral‐state reconstructions of morphological traits and assessed the homology of character states used to define sections and subsections inBrunellia. ResultsBrunelliacomprises two major clades and several subclades. Most of these clades/subclades do not correspond to previous infrageneric taxa. There is high topological incongruence among the subclades across analyses. ConclusionsPhylogenetic reconstructions point to rapid species diversification in Brunelliaceae, reflected in very short branches between successive species splits. The removal of putatively biased loci slightly improves phylogenetic support for individual clades. Reticulate evolution due to hybridization and/or incomplete lineage sorting likely both contribute to gene‐tree discordance. Morphological characters used to define taxa in current classification schemes are homoplastic in the ancestral character‐state reconstructions. While target enrichment data allows us to broaden our understanding of diversification inBrunellia, the relationships among subclades remain incompletely understood.more » « less
-
null (Ed.)A robust spore wall was a key requirement for terrestrialization by early plants. Sporopollenin in spore and pollen grain walls is thought to be polymerized and cross-linked to other macromolecular components, partly through oxidative processes involving H 2 O 2 . Therefore, we investigated effects of scavengers of reactive oxygen species (ROS) on the formation of spore walls in the moss Physcomitrella patens (Hedw.) Bruch, Schimp & W. Gümbel. Exposure of sporophytes, containing spores in the process of forming walls, to ascorbate, dimethylthiourea, or 4-hydroxy-TEMPO prevented normal wall development in a dose, chemical, and stage-dependent manner. Mature spores, exposed while developing to a ROS scavenger, burst when mounted in water on a flat slide under a coverslip (a phenomenon we named “augmented osmolysis” because they did not burst in phosphate-buffered saline or in water on a depression slide). Additionally, the walls of exposed spores were more susceptible to alkaline hydrolysis than those of the control spores, and some were characterized by discontinuities in the exine, anomalies in perine spine structure, abnormal intine and aperture, and occasionally, wall shedding. Our data support the involvement of oxidative cross-linking in spore-wall development, including sporopollenin polymerization or deposition, as well as a role for ROS in intine/aperture development.more » « less
An official website of the United States government
