skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties
The successful fabrication of black phosphorene (Black-P) in 2014 and subsequent synthesis of layered black As 1−x P x alloys have inspired research into two-dimensional (2D) binary As–P compounds. The very recent success in growing blue phosphorene (Blue-P) further motivated exploration of 2D Blue-AsP materials. Here, using ab initio swarm-intelligence global minimum structure-searching methods, we have obtained a series of novel and energetically favored 2D Blue-AsP (denoted x-AsP, x = I, II, III, IV, V) compounds with As : P = 1 : 1 stoichiometry. They display similar honeycomb structures to Blue-P. Remarkably, the lowest-energy AsP monolayer, namely I-AsP, not only possesses a quasi-direct band gap (2.41 eV), which can be tuned to a direct and optimal gap for photovoltaic applications by in-plane strain, but also has an ultrahigh electronic mobility up to ∼7.4 × 10 4 cm 2 V −1 s −1 , far surpassing that of Blue-P, and also exhibits high absorption coefficients (×10 5 cm −1 ). Our simulations also show that 30 nm-thick I-AsP sheet-based cells have photovoltaic efficiency as high as ∼12%, and the I-AsP/CdSe heterostructure solar cells possess a power conversion efficiency as high as ∼13%. All these outstanding characteristics suggest the I-AsP sheet as a promising material for high-efficiency solar cells.  more » « less
Award ID(s):
1736093
PAR ID:
10106992
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
17
ISSN:
2040-3364
Page Range / eLocation ID:
8260 to 8269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Three fused-ring electron acceptors ( SIDIC , DIDIC and TIDIC ) were designed and synthesized using single bond, vinylene and acetylene units linked indaceno[3,2- b ]dithiophene dimers as electron-rich cores and 3-(1,1-dicyanomethylene)-5,6-difluoro-1-indanone as electron-deficient termini. These molecules exhibit strong absorption from 550 to 900 nm with large attenuation coefficients of 1.8–2.0 × 10 5 M −1 cm −1 and high electron mobilities of 2.2–4.9 × 10 −3 cm 2 V −1 s −1 . In combination with wide-bandgap polymer FTAZ as a donor, organic solar cells exhibit efficiencies of 9.3–13.1%. Effects of the linking units on optical, electronic, morphologic, and photovoltaic properties were revealed. Relative to SIDIC , vinylene-bridged DIDIC shows red-shifted absorption, while acetylene-bridged TIDIC shows blue-shifted absorption. Compared with SIDIC and DIDIC , TIDIC has a lower HOMO, higher electron mobility, and higher device efficiency. 
    more » « less
  2. Abstract 2D black phosphorene (BP) carries a stellar set of physical properties such as conveniently tunable bandgap and extremely high ambipolar carrier mobility for optoelectronic devices. Herein, the judicious design and positioning of BP with tailored thickness as dual‐functional nanomaterials to concurrently enhance carrier extraction at both electron transport layer/perovskite and perovskite/hole transport layer interfaces for high‐efficiency and stable perovskite solar cells is reported. The synergy of favorable band energy alignment and concerted cascade interfacial carrier extraction, rendered by concurrent positioning of BP, delivered a progressively enhanced power conversion efficiency of 19.83% from 16.95% (BP‐free). Investigation into interfacial engineering further reveals enhanced light absorption and reduced trap density for improved photovoltaic performance with BP incorporation. This work demonstrates the appealing characteristic of rational implementation of BP as dual‐functional transport material for a diversity of optoelectronic devices, including photodetectors, sensors, light‐emitting diodes, etc. 
    more » « less
  3. Black phosphorus (b-P) is an allotrope of phosphorus whose properties have attracted great attention. In contrast to other 2D compounds, or pristine b-P, the properties of b-P alloys have yet to be explored. In this report, we present a detailed study on the Raman spectra and on the temperature dependence of the electrical transport properties of As-doped black phosphorus (b-AsP) for an As fraction x = 0.25. The observed complex Raman spectra were interpreted with the support of Density Functional Theory (DFT) calculations since each original mode splits in three due to P-P, P-As, and As-As bonds. Field-effect transistors (FET) fabricated from few-layered b-AsP exfoliated onto Si/SiO 2 substrates exhibit hole-doped like conduction with a room temperature ON/OFF current ratio of ~10 3 and an intrinsic field-effect mobility approaching ~300 cm 2 /Vs at 300 K which increases up to 600 cm 2 /Vs at 100 K when measured via a 4-terminal method. Remarkably, these values are comparable to, or higher, than those initially reported for pristine b-P, indicating that this level of As doping is not detrimental to its transport properties. The ON to OFF current ratio is observed to increase up to 10 5 at 4 K. At high gate voltages b-AsP displays metallic behavior with the resistivity decreasing with decreasing temperature and saturating below T ∼ 100 K, indicating a gate-induced insulator to metal transition. Similarly to pristine b-P, its transport properties reveal a high anisotropy between armchair (AC) and zig-zag (ZZ) directions. Electronic band structure computed through periodic dispersion-corrected hybrid Density Functional Theory (DFT) indicate close proximity between the Fermi level and the top of the valence band(s) thus explaining its hole doped character. Our study shows that b-AsP has potential for optoelectronics applications that benefit from its anisotropic character and the ability to tune its band gap as a function of the number of layers and As content. 
    more » « less
  4. Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides ( e.g. , MoS 2 , WS 2 ), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs ( i.e. , graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices. 
    more » « less
  5. Recently, a phosphorus isomer named green phosphorus was theoretically predicted with a similar interlayer interaction compared to that of black phosphorus, thus indicating that individual layers can be mechanically exfoliated to form two-dimensional (2D) layers known as green phosphorene. In this work, we investigated the properties of green phosphorene nanoribbons along both armchair and zigzag directions with ribbon widths up to 57 Å using density functional theory. Effects of ribbon width and strain on the mechanical and electronic properties of the ribbons were studied. The Young’s modulus, effect of quantum confinement on the band gap, and effect of strain on the band structures of the ribbons were investigated. The green phosphorene ribbons were found to exhibit prominent anisotropic properties, with the Young’s modulus in the range of 10-35 GPa for the armchair green phosphorene nanoribbons (AGPNR) and 160-170 GPa for the zigzag green phosphorene nanoribbons (ZGPNR), which are the same order of magnitude as those of the 2D sheets. The work function was found to be between 5 eV ∼ 5.7 eV for the range of widths studied. Both size and strain trigger direct-indirect band gap transitions in the ribbons and their transition mechanisms were discussed. 
    more » « less