skip to main content


Title: Two-dimensional Blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties
The successful fabrication of black phosphorene (Black-P) in 2014 and subsequent synthesis of layered black As 1−x P x alloys have inspired research into two-dimensional (2D) binary As–P compounds. The very recent success in growing blue phosphorene (Blue-P) further motivated exploration of 2D Blue-AsP materials. Here, using ab initio swarm-intelligence global minimum structure-searching methods, we have obtained a series of novel and energetically favored 2D Blue-AsP (denoted x-AsP, x = I, II, III, IV, V) compounds with As : P = 1 : 1 stoichiometry. They display similar honeycomb structures to Blue-P. Remarkably, the lowest-energy AsP monolayer, namely I-AsP, not only possesses a quasi-direct band gap (2.41 eV), which can be tuned to a direct and optimal gap for photovoltaic applications by in-plane strain, but also has an ultrahigh electronic mobility up to ∼7.4 × 10 4 cm 2 V −1 s −1 , far surpassing that of Blue-P, and also exhibits high absorption coefficients (×10 5 cm −1 ). Our simulations also show that 30 nm-thick I-AsP sheet-based cells have photovoltaic efficiency as high as ∼12%, and the I-AsP/CdSe heterostructure solar cells possess a power conversion efficiency as high as ∼13%. All these outstanding characteristics suggest the I-AsP sheet as a promising material for high-efficiency solar cells.  more » « less
Award ID(s):
1736093
NSF-PAR ID:
10106992
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
17
ISSN:
2040-3364
Page Range / eLocation ID:
8260 to 8269
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cadmium telluride (CdTe) solar cells are a promising photovoltaic (PV) technology for producing power in space owing to their high-efficiency (> 22.1 %), potential for specific power, and cost-effective manufacturing processes. In contrast to traditional space PVs, the high-Z (atomic number) CdTe absorbers can be intrinsically robust under extreme space radiation, offering long-term stability. Despite these advantages, the performance assessment of CdTe solar cells under high-energy particle irradiation (e.g., photons, neutrons, charged particles) is limited in the literature, and their stability is not comprehensively studied. In this work, we present the PV response of n-CdS / p-CdTe PVs under accelerated neutron irradiation. We measure PV properties of the devices at different neutron/photon doses. The equivalent dose deposited in the CdTe samples is simulated with deterministic and Monte Carlo radiation transport methods. Thin-film CdTe solar cells were synthesized on a fluorine-doped tin oxide (FTO) coated glass substrate (≈ 4 cm × 4 cm). CdS:O (≈ 100 nm) was reactively RF sputtered in an oxygen/argon ambient followed by a close-spaced sublimation deposition of CdTe (≈ 3.5 μm) in an oxygen/helium ambient. The sample was exposed to a 10 min vapor CdCl2 in oxygen/helium ambient at 430˚C. The samples were exposed to a wet CuCl2 solution prior to anneal 200ºC. A gold back-contact was formed on CdTe via thermal evaporation. The final sample contains 16 CdTe devices. For neutron irradiation, we cleaved the CdTe substrate into four samples and exposed two samples to ≈ 90 kW reactor power neutron radiation for 5.5 hours and 8.2 hours, respectively, in our TRIGA (Training, Research, Isotopes, General Atomics) reactor. We observed a noticeable color change of the glass substrates to brown after the neutron/gamma reactor exposure. Presumably, the injected high-energy neutrons caused the breaking of chemical bonds and the displacement of atoms in the glass substrates, creating point defects and color centers. The I-V characteristics showed noticeable deterioration with over 8 hour radiations. Specifically, the saturation current of the control devices was ≈ 25 nA increasing to 1 μA and 10 μA for the 5.5-hour and 8.2-hour radiated samples, respectively. The turn-on voltage of the control devices (≈ 0.85 V) decreased with the irradiated sample (≈ 0.75 V for 5.5-hour and ≈ 0.5 V for 8.2-hour exposures), implying noticeable radiation damage occurred at the heterojunction. The higher values of the ideality factor for irradiated devices (n > 2.2) compared to that of the control devices (n ≈ 1.3) also support the deterioration of the p-n junction. We observed the notable decrease in shunt resistance (RSH) and the increase in series resistance (Rs) with the neutron dose. It is possible that Cu ions introduced during the CuCl2 treatment may migrate into CdTe grain boundaries (GBs). The presence of Cu ions at GBs can create additional leakage paths for photocarrier transport, deteriorating the overall PV performance. We estimated the radiation dose of CdTe in comparison to Si (conventional PV) using a UUTR model (e.g., MCNP6 2D UTR Reactor simulations). In this model, we simulated Si and CdTe at the center point of the triangular fuel lattice and used an “unperturbed flux” tally in the water. Our simulations yielded a dose rate of 6916 Gy/s of neutrons and 16 Gy/s of photons for CdTe, and 1 Gy/s of neutrons and 21 Gy/s of photons for Si (doses +/- <1%). The large dose rate of neutrons in CdTe is mainly attributed to the large thermal neutron absorption cross-section of 113Cd. Based on this estimation, we calculate that the exposure of our CdTe PVs is equivalent to several million years in LEO (Low-Earth Orbit), or about 10,000 years for Si in LEO. Currently, we are working on a low-dose neutron/photon radiation on CdTe PVs and their light I-Vs and microstructural characterizations to gain better understanding on the degradation of CdTe PVs. 
    more » « less
  2. Black phosphorus (b-P) is an allotrope of phosphorus whose properties have attracted great attention. In contrast to other 2D compounds, or pristine b-P, the properties of b-P alloys have yet to be explored. In this report, we present a detailed study on the Raman spectra and on the temperature dependence of the electrical transport properties of As-doped black phosphorus (b-AsP) for an As fraction x = 0.25. The observed complex Raman spectra were interpreted with the support of Density Functional Theory (DFT) calculations since each original mode splits in three due to P-P, P-As, and As-As bonds. Field-effect transistors (FET) fabricated from few-layered b-AsP exfoliated onto Si/SiO 2 substrates exhibit hole-doped like conduction with a room temperature ON/OFF current ratio of ~10 3 and an intrinsic field-effect mobility approaching ~300 cm 2 /Vs at 300 K which increases up to 600 cm 2 /Vs at 100 K when measured via a 4-terminal method. Remarkably, these values are comparable to, or higher, than those initially reported for pristine b-P, indicating that this level of As doping is not detrimental to its transport properties. The ON to OFF current ratio is observed to increase up to 10 5 at 4 K. At high gate voltages b-AsP displays metallic behavior with the resistivity decreasing with decreasing temperature and saturating below T ∼ 100 K, indicating a gate-induced insulator to metal transition. Similarly to pristine b-P, its transport properties reveal a high anisotropy between armchair (AC) and zig-zag (ZZ) directions. Electronic band structure computed through periodic dispersion-corrected hybrid Density Functional Theory (DFT) indicate close proximity between the Fermi level and the top of the valence band(s) thus explaining its hole doped character. Our study shows that b-AsP has potential for optoelectronics applications that benefit from its anisotropic character and the ability to tune its band gap as a function of the number of layers and As content. 
    more » « less
  3. Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and fmax values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3], amongst other applications. This paper concerns RTD electroluminescence – an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In0.53Ga0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at ~300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b), parameterized by bias voltage (VB). The long wavelength emission edge is at  = 1684 nm - close to the In0.53Ga0.47As bandgap energy of Ug ≈ 0.75 eV at 300 K. The spectral peaks for VB = 2.8 and 3.0 V both occur around  = 1550 nm (h = 0.75 eV), so blue-shifted relative to the peak of the “ideal”, bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c), whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density Jinter. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate RN,2 comparable to the band-edge cross-gap rate RN,1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination RR,3 in the RTD quantum well between the electron ground-state level E1,e, and the hole level E1,h. To further test the model and estimate quantum efficiencies, we conducted optical power measurements using a large-area Ge photodiode located ≈3 mm away from the RTD pinhole, and having spectral response between 800 and 1800 nm with a peak responsivity of ≈0.85 A/W at  =1550 nm. Simultaneous I-V and L-V plots were obtained and are plotted in Fig. 2(a) with positive bias on the top contact (emitter on the bottom). The I-V curve displays a pronounced NDR region having a current peak-to-valley current ratio of 10.7 (typical for In0.53Ga0.47As RTDs). The external quantum efficiency (EQE) was calculated from EQE = e∙IP/(∙IE∙h) where IP is the photodiode dc current and IE the RTD current. The plot of EQE is shown in Fig. 2(b) where we see a very rapid rise with VB, but a maximum value (at VB= 3.0 V) of only ≈2×10-5. To extract the internal quantum efficiency (IQE), we use the expression EQE= c ∙i ∙r ≡ c∙IQE where ci, and r are the optical-coupling, electrical-injection, and radiative recombination efficiencies, respectively [6]. Our separate optical calculations yield c≈3.4×10-4 (limited primarily by the small pinhole) from which we obtain the curve of IQE plotted in Fig. 2(b) (right-hand scale). The maximum value of IQE (again at VB = 3.0 V) is 6.0%. From the implicit definition of IQE in terms of i and r given above, and the fact that the recombination efficiency in In0.53Ga0.47As is likely limited by Auger scattering, this result for IQE suggests that i might be significantly high. To estimate i, we have used the experimental total current of Fig. 2(a), the Kane two-band model of interband tunneling [7] computed in conjunction with a solution to Poisson’s equation across the entire structure, and a rate-equation model of Auger recombination on the emitter side [6] assuming a free-electron density of 2×1018 cm3. We focus on the high-bias regime above VB = 2.5 V of Fig. 2(a) where most of the interband tunneling should occur in the depletion region on the collector side [Jinter,2 in Fig. 1(c)]. And because of the high-quality of the InGaAs/AlAs heterostructure (very few traps or deep levels), most of the holes should reach the emitter side by some combination of drift, diffusion, and tunneling through the valence-band double barriers (Type-I offset) between InGaAs and AlAs. The computed interband current density Jinter is shown in Fig. 3(a) along with the total current density Jtot. At the maximum Jinter (at VB=3.0 V) of 7.4×102 A/cm2, we get i = Jinter/Jtot = 0.18, which is surprisingly high considering there is no p-type doping in the device. When combined with the Auger-limited r of 0.41 and c ≈ 3.4×10-4, we find a model value of IQE = 7.4% in good agreement with experiment. This leads to the model values for EQE plotted in Fig. 2(b) - also in good agreement with experiment. Finally, we address the high Jinter and consider a possible universal nature of the light-emission mechanism. Fig. 3(b) shows the tunneling probability T according to the Kane two-band model in the three materials, In0.53Ga0.47As, GaAs, and GaN, following our observation of a similar electroluminescence mechanism in GaN/AlN RTDs (due to strong polarization field of wurtzite structures) [8]. The expression is Tinter = (2/9)∙exp[(-2 ∙Ug 2 ∙me)/(2h∙P∙E)], where Ug is the bandgap energy, P is the valence-to-conduction-band momentum matrix element, and E is the electric field. Values for the highest calculated internal E fields for the InGaAs and GaN are also shown, indicating that Tinter in those structures approaches values of ~10-5. As shown, a GaAs RTD would require an internal field of ~6×105 V/cm, which is rarely realized in standard GaAs RTDs, perhaps explaining why there have been few if any reports of room-temperature electroluminescence in the GaAs devices. [1] E.R. Brown,et al., Appl. Phys. Lett., vol. 58, 2291, 1991. [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [2] M. Feiginov et al., Appl. Phys. Lett., 99, 233506, 2011. [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [3] Y. Nishida et al., Nature Sci. Reports, 9, 18125, 2019. [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [4] P. Fakhimi, et al., 2019 DRC Conference Digest. [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). [5] S. Sze, Physics of Semiconductor Devices, 2nd Ed. 12.2.1 (Wiley, 1981). [6] L. Coldren, Diode Lasers and Photonic Integrated Circuits, (Wiley, 1995). [7] E.O. Kane, J. of Appl. Phy 32, 83 (1961). [8] T. Growden, et al., Nature Light: Science & Applications 7, 17150 (2018). 
    more » « less
  4. Abstract

    Quasi‐2D hybrid halide perovskites have drawn considerable attention due to their improved stability and facile tunability compared to 3D perovskites. The expansiveness of possibilities has thus far been limited by the difficulty in incorporating large ligands into thin‐film devices. Here, a bulky bi‐thiophene 2T ligand is focused on to develop a solvent system around creating strongly vertically‐aligned (2T)2(MA)6Pb7I22(n = 7) quasi‐2D perovskite films. By starting with a poorly coordinating solvent (gamma‐butyrolactone) and adding a small amount of dimethylsulfoxide and methanol, it is found that vertical orientation andz‐uniformity is greatly improved. These are carefully examined and verified using grazing‐incidence wide‐angle X‐ray scattering analysis and advanced optical characterizations. These films are incorporated into champion solar cells that achieve a power conversion efficiency of 13.3%, with a short‐circuit current density of 18.9 mA cm‐2, an open‐circuit voltage of 0.96 V, and a fill factor of 73.8%. Furthermore, the quasi‐2D absorbing layers show excellent stability in moisture, remaining unchanged after hundreds of hours. In addition, 2T is compared with the more common ligands butylammonium and phenylethylammonium in this solvent system to develop heuristics and deeper understanding of how to incorporate large ligands into stable photovoltaic devices.

     
    more » « less
  5. Abstract

    2D black phosphorene (BP) carries a stellar set of physical properties such as conveniently tunable bandgap and extremely high ambipolar carrier mobility for optoelectronic devices. Herein, the judicious design and positioning of BP with tailored thickness as dual‐functional nanomaterials to concurrently enhance carrier extraction at both electron transport layer/perovskite and perovskite/hole transport layer interfaces for high‐efficiency and stable perovskite solar cells is reported. The synergy of favorable band energy alignment and concerted cascade interfacial carrier extraction, rendered by concurrent positioning of BP, delivered a progressively enhanced power conversion efficiency of 19.83% from 16.95% (BP‐free). Investigation into interfacial engineering further reveals enhanced light absorption and reduced trap density for improved photovoltaic performance with BP incorporation. This work demonstrates the appealing characteristic of rational implementation of BP as dual‐functional transport material for a diversity of optoelectronic devices, including photodetectors, sensors, light‐emitting diodes, etc.

     
    more » « less