skip to main content

Title: Secondary organic aerosol formation from the β-pinene+NO<sub>3</sub> system: effect of humidity and peroxy radical fate

Abstract. The formation of secondary organic aerosol (SOA) from the oxidation of β-pinene via nitrate radicals is investigated in the Georgia Tech Environmental Chamber (GTEC) facility. Aerosol yields are determined for experiments performed under both dry (relative humidity (RH) < 2 %) and humid (RH = 50 % and RH = 70 %) conditions. To probe the effects of peroxy radical (RO2) fate on aerosol formation, "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are performed. Gas-phase organic nitrate species (with molecular weights of 215, 229, 231, and 245 amu, which likely correspond to molecular formulas of C10H17NO4, C10H15NO5, C10H17NO5, and C10H15NO6, respectively) are detected by chemical ionization mass spectrometry (CIMS) and their formation mechanisms are proposed. The NO+ (at m/z 30) and NO2+ (at m/z 46) ions contribute about 11 % to the combined organics and nitrate signals in the typical aerosol mass spectrum, with the NO+ : NO2+ ratio ranging from 4.8 to 10.2 in all experiments conducted. The SOA yields in the "RO2 + NO3 dominant" and "RO2 + HO2 dominant" experiments are comparable. For a wide range of organic mass loadings (5.1–216.1 μg m&minus;3), the aerosol mass yield is calculated to be 27.0–104.1 %. Although humidity does not appear to affect SOA yields, there is evidence of particle-phase hydrolysis of organic nitrates, which are estimated to compose 45–74 % of the organic aerosol. The extent of organic nitrate hydrolysis is significantly lower than that observed in previous studies on photooxidation of volatile organic compounds in the presence of NOx. It is estimated that about 90 and 10 % of the organic nitrates formed from the β-pinene+NO3 reaction are primary organic nitrates and tertiary organic nitrates, respectively. While the primary organic nitrates do not appear to hydrolyze, the tertiary organic nitrates undergo hydrolysis with a lifetime of 3–4.5 h. Results from this laboratory chamber study provide the fundamental data to evaluate the contributions of monoterpene + NO3 reaction to ambient organic aerosol measured in the southeastern United States, including the Southern Oxidant and Aerosol Study (SOAS) and the Southeastern Center for Air Pollution and Epidemiology (SCAPE) study.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Page Range / eLocation ID:
7497 to 7522
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The production of atmospheric organic nitrates (RONO2) has a large impact on air quality and climate due to their contribution to secondary organic aerosol and influence on tropospheric ozone concentrations. Since organic nitrates control the fate of gas phase NOx (NO + NO2), a byproduct of anthropogenic combustion processes, their atmospheric production and reactivity is of great interest. While the atmospheric reactivity of many relevant organic nitrates is still uncertain, one significant reactive pathway, condensed phase hydrolysis, has recently been identified as a potential sink for organic nitrate species. The partitioning of gas phase organic nitrates to aerosol particles and subsequent hydrolysis likely removes the oxidized nitrogen from further atmospheric processing, due to large organic nitrate uptake to aerosols and proposed hydrolysis lifetimes, which may impact long-range transport of NOx, a tropospheric ozone precursor. Despite the atmospheric importance, the hydrolysis rates and reaction mechanisms for atmospherically derived organic nitrates are almost completely unknown, including those derived from α-pinene, a biogenic volatile organic compound (BVOC) that is one of the most significant precursors to biogenic secondary organic aerosol (BSOA). To better understand the chemistry that governs the fate of particle phase organic nitrates, the hydrolysis mechanism and rate constants were elucidated for several organic nitrates, including an α-pinene-derived organic nitrate (APN). A positive trend in hydrolysis rate constants was observed with increasing solution acidity for all organic nitrates studied, with the tertiary APN lifetime ranging from 8.3 min at acidic pH (0.25) to 8.8 h at neutral pH (6.9). Since ambient fine aerosol pH values are observed to be acidic, the reported lifetimes, which are much shorter than that of atmospheric fine aerosol, provide important insight into the fate of particle phase organic nitrates. Along with rate constant data, product identification confirms that a unimolecular specific acid-catalyzed mechanism is responsible for organic nitrate hydrolysis under acidic conditions. The free energies and enthalpies of the isobutyl nitrate hydrolysis intermediates and products were calculated using a hybrid density functional (ωB97X-V) to support the proposed mechanisms. These findings provide valuable information regarding the organic nitrate hydrolysis mechanism and its contribution to the fate of atmospheric NOx, aerosol phase processing, and BSOA composition. 
    more » « less
  2. Polyolefinic monoterpenes represent a potentially important but understudied source of organic nitrates (ONs) and secondary organic aerosol (SOA) following oxidation due to their high reactivity and propensity for multi-stage chemistry. Recent modeling work suggests that the oxidation of polyolefinic γ-terpinene can be the dominant source of nighttime ON in a mixed forest environment. However, the ON yields, aerosol partitioning behavior, and SOA yields from γ-terpinene oxidation by the nitrate radical (NO3), an important nighttime oxidant, have not been determined experimentally. In this work, we present a comprehensive experimental investigation of the total (gas + particle) ON, hydroxy nitrate, and SOA yields following γ-terpinene oxidation by NO3. Under dry conditions, the hydroxy nitrate yield  =  4(+1/−3) %, total ON yield  =  14(+3/−2) %, and SOA yield  ≤  10 % under atmospherically relevant particle mass loadings, similar to those for α-pinene + NO3. Using a chemical box model, we show that the measured concentrations of NO2 and γ-terpinene hydroxy nitrates can be reliably simulated from α-pinene + NO3 chemistry. This suggests that NO3 addition to either of the two internal double bonds of γ-terpinene primarily decomposes forming a relatively volatile keto-aldehyde, reconciling the small SOA yield observed here and for other internal olefinic terpenes. Based on aerosol partitioning analysis and identification of speciated particle-phase ON applying high-resolution liquid chromatography–mass spectrometry, we estimate that a significant fraction of the particle-phase ON has the hydroxy nitrate moiety. This work greatly contributes to our understanding of ON and SOA formation from polyolefin monoterpene oxidation, which could be important in the northern continental US and the Midwest, where polyolefinic monoterpene emissions are greatest. 
    more » « less
  3. Abstract. It has been widely observed around the world that the frequency and intensityof new particle formation (NPF) events are reduced during periods of highrelative humidity (RH). The current study focuses on how RH affects theformation of highly oxidized molecules (HOMs), which are key components ofNPF and initial growth caused by oxidized organics. The ozonolysis ofα-pinene, limonene, and Δ3-carene, with and without OHscavengers, were carried out under low NOx conditions undera range of RH (from ∼3 % to ∼92 %) in atemperature-controlled flow tube to generate secondary organic aerosol (SOA).A Scanning Mobility Particle Sizer (SMPS) was used to measure the sizedistribution of generated particles, and a novel transverse ionizationchemical ionization inlet with a high-resolution time-of-fight massspectrometer detected HOMs. A major finding from this work is that neitherthe detected HOMs nor their abundance changed significantly with RH, whichindicates that the detected HOMs must be formed from water-independentpathways. In fact, the distinguished OH- and O3-derived peroxyradicals (RO2), HOM monomers, and HOM dimers could mostly beexplained by the autoxidation of RO2 followed by bimolecularreactions with other RO2 or hydroperoxy radicals (HO2),rather than from a water-influenced pathway like through the formation of astabilized Criegee intermediate (sCI). However, as RH increased from ∼3 % to ∼92 %, the total SOA number concentrations decreased bya factor of 2–3 while SOA mass concentrations remained relatively constant. These observations show that, whilehigh RH appears to inhibit NPF as evident by the decreasing numberconcentration, this reduction is not caused by a decrease inRO2-derived HOM formation. Possible explanations for these phenomenawere discussed.

    more » « less
  4. Organic peroxy radicals (RO2) are key intermediates in the atmospheric degradation of organic matter and fuel combustion, but to date, few direct studies of specific RO2in complex reaction systems exist, leading to large gaps in our understanding of their fate. We show, using direct, speciated measurements of a suite of RO2and gas-phase dimers from O3-initiated oxidation of α-pinene, that ∼150 gaseous dimers (C16–20H24–34O4–13) are primarily formed through RO2cross-reactions, with a typical rate constant of 0.75–2 × 10−12cm3molecule−1s−1and a lower-limit dimer formation branching ratio of 4%. These findings imply a gaseous dimer yield that varies strongly with nitric oxide (NO) concentrations, of at least 0.2–2.5% by mole (0.5–6.6% by mass) for conditions typical of forested regions with low to moderate anthropogenic influence (i.e., ≤50-parts per trillion NO). Given their very low volatility, the gaseous C16–20dimers provide a potentially important organic medium for initial particle formation, and alone can explain 5–60% of α-pinene secondary organic aerosol mass yields measured at atmospherically relevant particle mass loadings. The responses of RO2, dimers, and highly oxygenated multifunctional compounds (HOM) to reacted α-pinene concentration and NO imply that an average ∼20% of primary α-pinene RO2from OH reaction and 10% from ozonolysis autoxidize at 3–10 s−1and ≥1 s−1, respectively, confirming both oxidation pathways produce HOM efficiently, even at higher NO concentrations typical of urban areas. Thus, gas-phase dimer formation and RO2autoxidation are ubiquitous sources of low-volatility organic compounds capable of driving atmospheric particle formation and growth.

    more » « less
  5. Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime.

    more » « less