Abstract. Marine phytoplankton such as bloom-forming, calcite-producingcoccolithophores, are naturally exposed to solar ultraviolet radiation (UVR,280–400nm) in the ocean's upper mixed layers. Nevertheless, the effects ofincreasing carbon dioxide (CO2)-induced ocean acidification and warming have rarelybeen investigated in the presence of UVR. We examined calcification andphotosynthetic carbon fixation performance in the most cosmopolitancoccolithophorid, Emiliania huxleyi, grown under high(1000µatm, HC; pHT: 7.70) and low (400µatm,LC; pHT: 8.02) CO2 levels, at 15∘C,20∘C and 24∘C with or without UVR. The HCtreatment did not affect photosynthetic carbon fixation at 15∘C,but significantly enhanced it with increasing temperature. Exposure to UVRinhibited photosynthesis, with higher inhibition by UVA (320–395nm) thanUVB (295–320nm), except in the HC and 24∘C-grown cells, in whichUVB caused more inhibition than UVA. A reduced thickness of the coccolith layerin the HC-grown cells appeared to be responsible for the UV-inducedinhibition, and an increased repair rate of UVA-derived damage in theHC–high-temperature grown cells could be responsible for lowered UVA-induced inhibition.While calcification was reduced with elevated CO2 concentration,exposure to UVB or UVA affected the process differentially, with the formerinhibiting it and the latter enhancing it. UVA-induced stimulation of calcification washigher in the HC-grown cells at 15 and 20∘C, whereas at24∘C observed enhancement was not significant. The calcificationto photosynthesis ratio (Cal∕Pho ratio) was lower in the HC treatment,and increasing temperature also lowered the value. However, at 20 and24∘C, exposure to UVR significantly increased the Cal∕Phoratio, especially in HC-grown cells, by up to 100%. This implies thatUVR can counteract the negative effects of the “greenhouse” treatment onthe Cal∕Pho ratio; hence, UVR may be a key stressor when considering theimpacts of future greenhouse conditions on E. huxleyi. 
                        more » 
                        « less   
                    
                            
                            Chlorine-initiated oxidation of <i>n</i>-alkanes under high-NO<sub><i>x</i></sub> conditions: insights into secondary organic aerosol composition and volatility using a FIGAERO–CIMS
                        
                    
    
            Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1653625
- PAR ID:
- 10082745
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 18
- Issue:
- 21
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 15535 to 15553
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract. We assessed the influence of the marine diazotrophic cyanobacterium Trichodesmium on the bio-optical properties of western tropical South Pacific (WTSP) waters (18–22°S, 160°E–160°W) during the February–March 2015 OUTPACE cruise. We performed measurements of backscattering and absorption coefficients, irradiance, and radiance in the euphotic zone with a Satlantic MicroPro free-fall profiler and took Underwater Vision Profiler 5 (UPV5) pictures for counting the largest Trichodesmium spp. colonies. Pigment concentrations were determined by fluorimetry and high-performance liquid chromatography and picoplankton abundance by flow cytometry. Trichome concentration was estimated from pigment algorithms and validated by surface visual counts. The abundance of large colonies counted by the UVP5 (maximum 7093coloniesm−3) was well correlated to the trichome concentrations (maximum 2093trichomesL−1) with an aggregation factor of 600. In the Melanesian archipelago, a maximum of 4715trichomesL−1 was enumerated in pump samples (3.2m) at 20°S,16730°E. High Trichodesmium abundance was always associated with absorption peaks of mycosporine-like amino acids (330, 360nm) and high particulate backscattering, but not with high Chl a fluorescence or blue particulate absorption (440nm). Along the west-to-east transect, Trichodesmium together with Prochlorococcus represented the major part of total chlorophyll concentration; the contribution of other groups were relatively small or negligible. The Trichodesmium contribution to total chlorophyll concentration was the highest in the Melanesian archipelago around New Caledonia and Vanuatu (60%), progressively decreased to the vicinity of the islands of Fiji (30%), and reached a minimum in the South Pacific Gyre where Prochlorococcus dominated chlorophyll concentration. The contribution of Trichodesmium to zeaxanthin was respectively 50, 40 and 20% for these regions. During the OUTPACE cruise, the relationship between normalized water-leaving radiance (nLw) in the ultraviolet and visible and chlorophyll concentration was similar to that found during the BIOSOPE cruise in the eastern tropical Pacific. Principal component analysis (PCA) of OUTPACE data showed that nLw at 305, 325, 340, 380, 412 and 440nm was strongly correlated to chlorophyll and zeaxanthin, while nLw at 490 and 565nm exhibited lower correlations. These results, as well as differences in the PCA of BIOSOPE data, indicated that nLw variability in the greenish blue and yellowish green during OUTPACE was influenced by other variables associated with Trichodesmium presence, such as backscattering coefficient, phycoerythrin fluorescence and/or zeaxanthin absorption, suggesting that Trichodesmium detection should involve examination of nLw in this spectral domain.more » « less
- 
            Abstract. Physiological aspects like heat balance, gas exchange, osmoregulation, and digestion of the early Permian aquatic temnospondyl Archegosaurus decheni, which lived in a tropical freshwater lake, are assessed based on osteological correlates of physiologically relevant soft-tissue organs and by physiological estimations analogous to air-breathing fishes. Body mass (M) of an adult Archegosaurus with an overall body length of more than 1m is estimated as 7kg using graphic double integration. Standard metabolic rate (SMR) at 20°C (12kJh−1) and active metabolic rate (AMR) at 25°C (47kJh−1) were estimated according to the interspecific allometry of metabolic rate (measured as oxygen consumption) of all fish (VO2 = 4. 8M0. 88) and form the basis for most of the subsequent estimations. Archegosaurus is interpreted as a facultative air breather that got O2 from the internal gills at rest in well-aerated water but relied on its lungs for O2 uptake in times of activity and hypoxia. The bulk of CO2 was always eliminated via the gills. Our estimations suggest that if Archegosaurus did not have gills and released 100% CO2 from its lungs, it would have to breathe much more frequently to release enough CO2 relative to the lung ventilation required for just O2 uptake. Estimations of absorption and assimilation in the digestive tract of Archegosaurus suggest that an adult had to eat about six middle-sized specimens of the acanthodian fish Acanthodes (ca. 8cm body length) per day to meet its energy demands. Archegosaurus is regarded as an ammonotelic animal that excreted ammonia (NH3) directly to the water through the gills and the skin, and these diffusional routes dominated nitrogen excretion by the kidneys as urine. Osmotic influx of water through the gills had to be compensated for by production of dilute, hypoosmotic urine by the kidneys. Whereas Archegosaurus has long been regarded as a salamander-like animal, there is evidence that its physiology was more fish- than tetrapod-like in many respects.more » « less
- 
            Abstract. We present the development and assessment of a new flight system that uses acommercially available continuous-wave, tunable infrared laser directabsorption spectrometer to measure N2O, CO2, CO, andH2O. When the commercial system is operated in an off-the-shelfmanner, we find a clear cabin pressure–altitude dependency forN2O, CO2, and CO. The characteristics of this artifactmake it difficult to reconcile with conventional calibration methods. Wepresent a novel procedure that extends upon traditional calibrationapproaches in a high-flow system with high-frequency, short-duration samplingof a known calibration gas of near-ambient concentration. This approachcorrects for cabin pressure dependency as well as other sources of drift inthe analyzer while maintaining a ∼90% duty cycle for 1Hz sampling.Assessment and validation of the flight system with both extensive in-flightcalibrations and comparisons with other flight-proven sensors demonstrate thevalidity of this method. In-flight 1σ precision is estimated at0.05ppb, 0.10ppm, 1.00ppb, and 10ppm for N2O,CO2, CO, and H2O respectively, and traceability to WorldMeteorological Organization (WMO) standards (1σ) is 0.28ppb,0.33ppm, and 1.92ppb for N2O, CO2, and CO. We showthe system is capable of precise, accurate 1Hz airborne observations ofN2O, CO2, CO, and H2O and highlight flightdata, illustrating the value of this analyzer for studying N2Oemissions on ∼100km spatial scales.more » « less
- 
            The effect of relative humidity (RH) on the chemical composition of secondary organic aerosol (SOA) formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS). Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS) at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    