skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Alcohol mediated degenerate chain transfer controlled cationic polymerisation of para -alkoxystyrene
In this report we demonstrate methanol as an effective degenerative chain transfer agent to control the cationic polymerisation (initiated by triflic acid) of electron rich p -alkoxy-styrenes, such as p -methoxystyrene ( p -MOS). Kinetic analysis revealed that an induction period occurs initially during which free cationic polymerisation occurs at low monomer conversion before proceeding through the pseudo first order rate, analogous to the RAFT mechanism. Ethanol and isopropanol also demonstrated excellent control ( Đ > 1.30), however, with an apparent increase in experimental molecular weight. Furthermore, methanol controlled polymers were successfully chain extended upon sequential monomer addition, demonstrating the ‘livingness’ of the alcohol mediated cationic polymerisation.  more » « less
Award ID(s):
1808055
PAR ID:
10107234
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
10
Issue:
30
ISSN:
1759-9954
Page Range / eLocation ID:
4126 to 4133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side‐chain polymers to be grafted from the pendant RAFT agent by a radical‐mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one‐pot tandem without intermediate purification. 
    more » « less
  2. Abstract Gaining temporal control over chain growth is a key challenge in the enhancement of controlled living polymerizations. Though research on photocontrolled polymerizations is still in its infancy, it has already proven useful in the development of previously inaccessible materials. Photocontrol has now been extended to cationic polymerizations using 2,4,6‐triarylpyrylium salts as photocatalysts. Despite the ability to stop polymerization for a short time, monomer conversion was observed over long dark periods. Improved catalyst systems based on Ir complexes give optimal temporal control over chain growth. The excellent stability of these complexes and the ability to tune the excited and ground state redox potentials to regulate the number of monomer additions per cation formed allows polymerization to be halted for more than 20 hours. The excellent stability of these iridium catalysts in the presence of more nucleophilic species enables chain‐end functionalization of these polymers. 
    more » « less
  3. null (Ed.)
    We discuss the formation of weak covalent bonds leading to anionic charge-sharing dimerisation or polymerisation in microscopic cluster environments. The covalent bonding between cluster building blocks is described in terms of coherent charge sharing, conceptualised using a coupled-monomers molecular-orbital model. The model assumes first-order separability of the inter- and intra-monomer bonding structures. Combined with a Hückel-style formalism adapted to weak covalent and solvation interactions, it offers insight into the competition between the two types of forces and illuminates the properties of the inter-monomer orbitals responsible for charge-sharing dimerisation and polymerisation. Under typical conditions, the cumulative effect of solvation obstructs the polymerisation, limiting the size of covalently bound core anions. 
    more » « less
  4. Abstract The unique properties of cationic nanogels, such as their hydrophilicity and high loading capacity, make them a promising platform as drug delivery agents, particularly for the delivery of hydrophilic biomolecules. Although several synthetic methods exist for cationic nanogels, polymerization in dispersed media is advantageous due to its ability to provide control over composition and high monomer conversion. However, polymer droplets typically suffer from a significant increase in size during polymerization due to the Ostwald ripening process. Herein, the preparation of cationic nanogels by atom transfer radical polymerization under inverse microemulsion conditions of a hydrophilic inimer that prevents monomer diffusion and hence limits droplets’ growth during polymerization is reported. Additionally, the surface functionality of the nanogels can be modulated by the application of hydrophobic reactive surfactants or by grafting hydrophilic shells to form core‐shell cationic nanogels. The synthesized cationic nanogels are biocompatible, internalized to HEK 293 cells, and have a high complexation ability for plasmid DNA. 
    more » « less
  5. Abstract The synthesis of high‐molecular‐weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain‐transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)–organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol−1can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end. 
    more » « less